Patents by Inventor Ralph Nuzzo

Ralph Nuzzo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140373898
    Abstract: Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Application
    Filed: March 13, 2014
    Publication date: December 25, 2014
    Applicants: Semprius, Inc., The Board of Trustees of the University of Illinois
    Inventors: John ROGERS, Ralph NUZZO, Matthew MEITL, Etienne MENARD, Alfred BACA, Michael MOTALA, Jong-Hyun AHN, Sang-Il PARK, Chang-Jae YU, Heung Cho KO, Mark STOYKOVICH, Jongseung YOON
  • Patent number: 8865489
    Abstract: Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: October 21, 2014
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Ralph Nuzzo, Hoon-sik Kim, Eric Brueckner, Sang Il Park, Rak Hwan Kim
  • Publication number: 20140216524
    Abstract: Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 ?m and, for example, is made from low grade Si.
    Type: Application
    Filed: February 5, 2014
    Publication date: August 7, 2014
    Inventors: John A. ROGERS, Angus A. ROCKETT, Ralph NUZZO, Jongseung YOON, Alfred BACA
  • Patent number: 8722458
    Abstract: Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: May 13, 2014
    Assignees: The Board of Trustees of the University of Illinois, Semprius, Inc.
    Inventors: John Rogers, Ralph Nuzzo, Matthew Meitl, Etienne Menard, Alfred J. Baca, Michael Motala, Jong-Hyun Ahn, Sang-Il Park, Chang-Jae Yu, Heung Cho Ko, Mark Stoykovich, Jongseung Yoon
  • Patent number: 8679888
    Abstract: Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 ?m and, for example, is made from low grade Si.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: March 25, 2014
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Angus A. Rockett, Ralph Nuzzo, Jongseung Yoon, Alfred Baca
  • Patent number: 8252191
    Abstract: The present invention provides a method of sub-micron decal transfer lithography. The method includes forming a first pattern in a surface of a first silicon-containing elastomer, bonding at least a portion of the first pattern to a substrate, and etching a portion of at least one of the first silicon-containing elastomer and the substrate.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: August 28, 2012
    Assignee: Dow Corning Corporation
    Inventors: Ahn Heejoon, Ralph Nuzzo, Anne Shim
  • Publication number: 20110277813
    Abstract: Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 ?m and, for example, is made from low grade Si.
    Type: Application
    Filed: September 24, 2009
    Publication date: November 17, 2011
    Inventors: John A. Rogers, Angus A. Rockett, Ralph Nuzzo, Jongseung Yoon, Alfred Baca
  • Publication number: 20110266561
    Abstract: The present invention provides optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Application
    Filed: May 4, 2011
    Publication date: November 3, 2011
    Inventors: John ROGERS, Ralph NUZZO, Matthew MEITL, Etienne MENARD, Alfred J. BACA, Michael MOTALA, Jong-Hyun AHN, Sang-Il PARK, Chang-Jae YU, Heung-Cho KO, Mark STOYKOVICH, Jongseung YOON
  • Patent number: 7972875
    Abstract: Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 5, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John Rogers, Ralph Nuzzo, Matthew Meitl, Etienne Menard, Alfred J. Baca, Michael Motala, Jong-Hyun Ahn, Sang-II Park, Chang-Jae Yu, Heung-Cho Ko, Mark Stoykovich, Jongseung Yoon
  • Publication number: 20100317132
    Abstract: Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.
    Type: Application
    Filed: May 12, 2010
    Publication date: December 16, 2010
    Inventors: John A. Rogers, Ralph Nuzzo, Hoon-sik Kim, Eric Brueckner, Sang Il Park, Rak Hwan Kim
  • Publication number: 20100283069
    Abstract: The present invention provides optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Application
    Filed: October 31, 2007
    Publication date: November 11, 2010
    Inventors: John Rogers, Ralph Nuzzo, Matthew Meitl, Etienne Menard, Alfred J. Baca, Michael Motala, Jong-Hyun Ahn, Sang-Il Park, Chang-Jae Yu, Heung-Cho Ko, Mark Stoykovich, Jongseung Yoon
  • Publication number: 20080190888
    Abstract: The present invention provides a method of sub-micron decal transfer lithography. The method includes forming a first pattern in a surface of a first silicon-containing elastomer, bonding at least a portion of the first pattern to a substrate, and etching a portion of at least one of the first silicon-containing elastomer and the substrate.
    Type: Application
    Filed: May 5, 2006
    Publication date: August 14, 2008
    Inventors: Ahn Heejoon, Ralph Nuzzo, Anne Shim
  • Publication number: 20080108171
    Abstract: Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.
    Type: Application
    Filed: September 20, 2007
    Publication date: May 8, 2008
    Inventors: John Rogers, Ralph Nuzzo, Matthew Meitl, Heung Cho Ko, Jongseung Yoon, Etienne Menard, Alfred Baca
  • Publication number: 20070032089
    Abstract: The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.
    Type: Application
    Filed: June 1, 2006
    Publication date: February 8, 2007
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Ralph Nuzzo, John Rogers, Etienne Menard, Keon Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu, Heung Ko
  • Publication number: 20060084012
    Abstract: A method of making a microstructure includes selectively activating a portion of a surface of a silicon-containing elastomer, contacting the activated portion with a substance, and bonding the activated portion and the substance, such that the activated portion of the surface and the substance in contact with the activated portion are irreversibly attached. The selective activation may be accomplished by positioning a mask on the surface of the silicon-containing elastomer, and irradiating the exposed portion with UV radiation.
    Type: Application
    Filed: October 14, 2004
    Publication date: April 20, 2006
    Inventors: Ralph Nuzzo, William Childs, Michael Motala, Keon Lee
  • Publication number: 20050233198
    Abstract: A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.
    Type: Application
    Filed: March 8, 2005
    Publication date: October 20, 2005
    Inventors: Ralph Nuzzo, Svetlana Mitrovski
  • Publication number: 20050199584
    Abstract: A method of making a microstructure includes forming a pattern in a surface of a silicon-containing elastomer, oxidizing the pattern, contacting the pattern with a substrate; and bonding the oxidized pattern and the substrate such that the pattern and the substrate are irreversibly attached. The silicon-containing elastomer may be removably attached to a transfer pad.
    Type: Application
    Filed: August 4, 2004
    Publication date: September 15, 2005
    Inventors: Ralph Nuzzo, William Childs