Patents by Inventor Ramesh B. Gunna

Ramesh B. Gunna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11947457
    Abstract: A scalable cache coherency protocol for system including a plurality of coherent agents coupled to one or more memory controllers is described. The memory controller may implement a precise directory for cache blocks from the memory to which the memory controller is coupled. Multiple requests to a cache block may be outstanding, and snoops and completions for requests may include an expected cache state at the receiving agent, as indicated by a directory in the memory controller when the request was processed, to allow the receiving agent to detect race conditions. In an embodiment, the cache states may include a primary shared and a secondary shared state. The primary shared state may apply to a coherent agent that bears responsibility for transmitting a copy of the cache block to a requesting agent. In an embodiment, at least two types of snoops may be supported: snoop forward and snoop back.
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: April 2, 2024
    Assignee: Apple Inc.
    Inventors: James Vash, Gaurav Garg, Brian P. Lilly, Ramesh B. Gunna, Steven R. Hutsell, Lital Levy-Rubin, Per H. Hammarlund, Harshavardhan Kaushikkar
  • Patent number: 11934313
    Abstract: A system including a plurality of processor cores, a plurality of graphics processing units, a plurality of peripheral circuits, and a plurality of memory controllers is configured to support scaling of the system using a unified memory architecture.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: March 19, 2024
    Assignee: Apple Inc.
    Inventors: Per H. Hammarlund, Lior Zimet, James Vash, Gaurav Garg, Sergio Kolor, Harshavardhan Kaushikkar, Ramesh B. Gunna, Steven R. Hutsell
  • Patent number: 11868258
    Abstract: A scalable cache coherency protocol for system including a plurality of coherent agents coupled to one or more memory controllers is described. The memory controller may implement a precise directory for cache blocks from the memory to which the memory controller is coupled. Multiple requests to a cache block may be outstanding, and snoops and completions for requests may include an expected cache state at the receiving agent, as indicated by a directory in the memory controller when the request was processed, to allow the receiving agent to detect race conditions. In an embodiment, the cache states may include a primary shared and a secondary shared state. The primary shared state may apply to a coherent agent that bears responsibility for transmitting a copy of the cache block to a requesting agent. In an embodiment, at least two types of snoops may be supported: snoop forward and snoop back.
    Type: Grant
    Filed: January 27, 2023
    Date of Patent: January 9, 2024
    Assignee: Apple Inc.
    Inventors: James Vash, Gaurav Garg, Brian P. Lilly, Ramesh B. Gunna, Steven R. Hutsell, Lital Levy-Rubin, Per H. Hammarlund, Harshavardhan Kaushikkar
  • Patent number: 11675409
    Abstract: An apparatus includes an execute circuit configured to execute a plurality of operations received from a queue, as well as a power estimator circuit, and a power sensing circuit. The power estimator circuit is configured to predict power consumption due to execution of a particular operation of the plurality of operations, and to withdraw, based on the predicted power consumption, a first amount of power credits from a power credit pool. The power sensing circuit is configured to monitor one or more characteristics of a power supply node coupled to the execute circuit to generate a power value, and to deposit a second amount of power credits into the power credit pool. The second amount of power credits may be based on the power value indicating that power consumed during the execution of the particular operation is less than the predicted power consumption.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: June 13, 2023
    Assignee: Apple Inc.
    Inventors: Matthias Knoth, Srikanth Balasubramanian, Venkatram Krishnaswamy, Ramesh B. Gunna
  • Publication number: 20230169003
    Abstract: A scalable cache coherency protocol for system including a plurality of coherent agents coupled to one or more memory controllers is described. The memory controller may implement a precise directory for cache blocks from the memory to which the memory controller is coupled. Multiple requests to a cache block may be outstanding, and snoops and completions for requests may include an expected cache state at the receiving agent, as indicated by a directory in the memory controller when the request was processed, to allow the receiving agent to detect race conditions. In an embodiment, the cache states may include a primary shared and a secondary shared state. The primary shared state may apply to a coherent agent that bears responsibility for transmitting a copy of the cache block to a requesting agent. In an embodiment, at least two types of snoops may be supported: snoop forward and snoop back.
    Type: Application
    Filed: January 27, 2023
    Publication date: June 1, 2023
    Inventors: James Vash, Gaurav Garg, Brian P. Lilly, Ramesh B. Gunna, Steven R. Hutsell, Lital Levy-Rubin, Per H. Hammarlund, Harshavardhan Kaushikkar
  • Publication number: 20230083397
    Abstract: A scalable cache coherency protocol for system including a plurality of coherent agents coupled to one or more memory controllers is described. The memory controller may implement a precise directory for cache blocks from the memory to which the memory controller is coupled. Multiple requests to a cache block may be outstanding, and snoops and completions for requests may include an expected cache state at the receiving agent, as indicated by a directory in the memory controller when the request was processed, to allow the receiving agent to detect race conditions. In an embodiment, the cache states may include a primary shared and a secondary shared state. The primary shared state may apply to a coherent agent that bears responsibility for transmitting a copy of the cache block to a requesting agent. In an embodiment, at least two types of snoops may be supported: snoop forward and snoop back.
    Type: Application
    Filed: November 22, 2022
    Publication date: March 16, 2023
    Inventors: James Vash, Gaurav Garg, Brian P. Lilly, Ramesh B. Gunna, Steven R. Hutsell, Lital Levy-Rubin, Per H. Hammarlund, Harshavardhan Kaushikkar
  • Publication number: 20230056044
    Abstract: A system including a plurality of processor cores, a plurality of graphics processing units, a plurality of peripheral circuits, and a plurality of memory controllers is configured to support scaling of the system using a unified memory architecture.
    Type: Application
    Filed: August 22, 2022
    Publication date: February 23, 2023
    Inventors: Per H. Hammarlund, Lior Zimet, James Vash, Gaurav Garg, Sergio Kolor, Harshavardhan Kaushikkar, Ramesh B. Gunna, Steven R. Hutsell
  • Patent number: 11544193
    Abstract: A scalable cache coherency protocol for system including a plurality of coherent agents coupled to one or more memory controllers is described. The memory controller may implement a precise directory for cache blocks from the memory to which the memory controller is coupled. Multiple requests to a cache block may be outstanding, and snoops and completions for requests may include an expected cache state at the receiving agent, as indicated by a directory in the memory controller when the request was processed, to allow the receiving agent to detect race conditions. In an embodiment, the cache states may include a primary shared and a secondary shared state. The primary shared state may apply to a coherent agent that bears responsibility for transmitting a copy of the cache block to a requesting agent. In an embodiment, at least two types of snoops may be supported: snoop forward and snoop back.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: January 3, 2023
    Assignee: Apple Inc.
    Inventors: James Vash, Gaurav Garg, Brian P. Lilly, Ramesh B. Gunna, Steven R. Hutsell, Lital Levy-Rubin, Per H. Hammarlund, Harshavardhan Kaushikkar
  • Publication number: 20220342471
    Abstract: An apparatus includes an execute circuit configured to execute a plurality of operations received from a queue, as well as a power estimator circuit, and a power sensing circuit. The power estimator circuit is configured to predict power consumption due to execution of a particular operation of the plurality of operations, and to withdraw, based on the predicted power consumption, a first amount of power credits from a power credit pool. The power sensing circuit is configured to monitor one or more characteristics of a power supply node coupled to the execute circuit to generate a power value, and to deposit a second amount of power credits into the power credit pool. The second amount of power credits may be based on the power value indicating that power consumed during the execution of the particular operation is less than the predicted power consumption.
    Type: Application
    Filed: July 12, 2022
    Publication date: October 27, 2022
    Inventors: Matthias Knoth, Srikanth Balasubramanian, Venkatram Krishnaswamy, Ramesh B. Gunna
  • Patent number: 11416056
    Abstract: An apparatus includes an execute circuit configured to execute a plurality of operations received from a queue, as well as a power estimator circuit, and a power sensing circuit. The power estimator circuit is configured to predict power consumption due to execution of a particular operation of the plurality of operations, and to withdraw, based on the predicted power consumption, a first amount of power credits from a power credit pool. The power sensing circuit is configured to monitor one or more characteristics of a power supply node coupled to the execute circuit to generate a power value, and to deposit a second amount of power credits into the power credit pool. The second amount of power credits may be based on the power value indicating that power consumed during the execution of the particular operation is less than the predicted power consumption.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: August 16, 2022
    Assignee: Apple Inc.
    Inventors: Matthias Knoth, Srikanth Balasubramanian, Venkatram Krishnaswamy, Ramesh B. Gunna
  • Patent number: 11347198
    Abstract: Systems, apparatuses, and methods for implementing an optimized adaptive thermal control mechanism for an integrated circuit (IC) are described. A control unit receives a digital input value which is representative of a temperature of an IC. The control unit compares the input value to at least two set points. A result of a first comparison determines whether an accumulator is incremented or decremented by a programmable gain value. A result of a second comparison determines whether the accumulator is primed with a preset ramp-up value. The preset ramp-up value is used since the accumulator can take several sensing cycles to reach the optimal control value while thermal gradients can become critical in only a few cycles. The output of the accumulator is provided to an actuator which adjusts parameter(s) to modulate the IC's temperature. The granularity and range of the accumulator matches the granularity and range of the actuator.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: May 31, 2022
    Assignee: Apple Inc.
    Inventors: Matthias Knoth, Ramesh B. Gunna, Srikanth Balasubramanian
  • Publication number: 20220091649
    Abstract: An apparatus includes an execute circuit configured to execute a plurality of operations received from a queue, as well as a power estimator circuit, and a power sensing circuit. The power estimator circuit is configured to predict power consumption due to execution of a particular operation of the plurality of operations, and to withdraw, based on the predicted power consumption, a first amount of power credits from a power credit pool. The power sensing circuit is configured to monitor one or more characteristics of a power supply node coupled to the execute circuit to generate a power value, and to deposit a second amount of power credits into the power credit pool. The second amount of power credits may be based on the power value indicating that power consumed during the execution of the particular operation is less than the predicted power consumption.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Inventors: Matthias Knoth, Srikanth Balasubramanian, Venkatram Krishnaswamy, Ramesh B. Gunna
  • Publication number: 20220083472
    Abstract: A scalable cache coherency protocol for system including a plurality of coherent agents coupled to one or more memory controllers is described. The memory controller may implement a precise directory for cache blocks from the memory to which the memory controller is coupled. Multiple requests to a cache block may be outstanding, and snoops and completions for requests may include an expected cache state at the receiving agent, as indicated by a directory in the memory controller when the request was processed, to allow the receiving agent to detect race conditions. In an embodiment, the cache states may include a primary shared and a secondary shared state. The primary shared state may apply to a coherent agent that bears responsibility for transmitting a copy of the cache block to a requesting agent. In an embodiment, at least two types of snoops may be supported: snoop forward and snoop back.
    Type: Application
    Filed: May 10, 2021
    Publication date: March 17, 2022
    Inventors: James Vash, Gaurav Garg, Brian P. Lilly, Ramesh B. Gunna, Steven R. Hutsell, Lital Levy-Rubin, Per H. Hammarlund
  • Publication number: 20220075343
    Abstract: Systems, apparatuses, and methods for implementing an optimized adaptive thermal control mechanism for an integrated circuit (IC) are described. A control unit receives a digital input value which is representative of a temperature of an IC. The control unit compares the input value to at least two set points. A result of a first comparison determines whether an accumulator is incremented or decremented by a programmable gain value. A result of a second comparison determines whether the accumulator is primed with a preset ramp-up value. The preset ramp-up value is used since the accumulator can take several sensing cycles to reach the optimal control value while thermal gradients can become critical in only a few cycles. The output of the accumulator is provided to an actuator which adjusts parameter(s) to modulate the IC's temperature. The granularity and range of the accumulator matches the granularity and range of the actuator.
    Type: Application
    Filed: September 4, 2020
    Publication date: March 10, 2022
    Inventors: Matthias Knoth, Ramesh B. Gunna, Srikanth Balasubramanian
  • Patent number: 10901484
    Abstract: A processor includes a mechanism for disabling a memory array of a branch prediction unit. The processor may include a next fetch prediction unit that may include a number of entries. Each entry may correspond to a next instruction fetch group and may store an indication of whether or not the corresponding the next fetch group includes a conditional branch instruction. In response to an indication that the next fetch group does not include a conditional branch instruction, the fetch prediction unit may be configured to disable, in a next instruction execution cycle, the memory array of the branch prediction unit.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: January 26, 2021
    Assignee: Apple Inc.
    Inventors: Conrado Blasco, Ronald P. Hall, Ramesh B. Gunna, Ian D. Kountanis, Shyam Sundar, André Seznec
  • Publication number: 20190286218
    Abstract: A processor includes a mechanism for disabling a memory array of a branch prediction unit. The processor may include a next fetch prediction unit that may include a number of entries. Each entry may correspond to a next instruction fetch group and may store an indication of whether or not the corresponding the next fetch group includes a conditional branch instruction. In response to an indication that the next fetch group does not include a conditional branch instruction, the fetch prediction unit may be configured to disable, in a next instruction execution cycle, the memory array of the branch prediction unit.
    Type: Application
    Filed: March 25, 2019
    Publication date: September 19, 2019
    Inventors: Conrado Blasco, Ronald P. Hall, Ramesh B. Gunna, Ian D. Kountanis, Shyam Sundar, André Seznec
  • Patent number: 10416692
    Abstract: A method and apparatus for reducing capacitor noise in electronic systems is disclosed. A system includes at least one functional circuit block coupled to receive a variable supply voltage. The value of the supply voltage is controlled by a power management circuit. Changing a performance state of the functional circuit block includes increasing the supply voltage for higher performance, and reducing the supply voltage for reduced performance demands. The power management circuit, in changing to a higher performance state, increases the supply voltage at a first rate. A rate control circuit causes the power management circuit to reduce the supply voltage, when changing to a lower performance state, at a second rate that is less than the first rate.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: September 17, 2019
    Assignee: Apple Inc.
    Inventors: Jong-Suk Lee, Ramesh B. Gunna, Shih-Chieh Wen
  • Patent number: 10410688
    Abstract: An IC in which a power state of a circuit in one power domain is managed based at least in part on a power state of a circuit in another power domain is disclosed. In one embodiment, an IC includes first and second functional circuit blocks in first and second power domains, respectively. A third functional block shared by the first and second is also implemented in the first power domain. A power management unit may control power states of each of the first, second, and third functional circuit blocks. The power management circuit may, when the first functional circuit block is in a sleep state, set a power state of the third functional block in accordance with that of the second functional circuit block.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: September 10, 2019
    Assignee: Apple Inc.
    Inventors: Shih-Chieh Wen, Jong-Suk Lee, Ramesh B. Gunna
  • Patent number: 10401938
    Abstract: Systems, apparatuses, and methods for reaching power targets across different clock domains are described. In various embodiments, a first processor complex and a second processor complex operate while powered by a same, single power plane, but with respective clock domains. When a request is detected to change an operating mode of a particular core from one of the processor complexes to an operating mode which does not provide the worst-case power supply load on the single power plane, an amount of voltage margin to recover from the operational voltage is determined based on the second operating mode prior to granting the request and based on each other core in the complexes operating in respective current operating modes. An operational voltage less the determined voltage margin to recover is assigned to the processor complexes while different clock frequencies are assigned to the processor complexes.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: September 3, 2019
    Assignee: Apple Inc.
    Inventors: Jong-Suk Lee, Ramesh B. Gunna, Shih-Chieh R. Wen, John H. Mylius
  • Publication number: 20190221241
    Abstract: An IC in which a power state of a circuit in one power domain is managed based at least in part on a power state of a circuit in another power domain is disclosed. In one embodiment, an IC includes first and second functional circuit blocks in first and second power domains, respectively. A third functional block shared by the first and second is also implemented in the first power domain. A power management unit may control power states of each of the first, second, and third functional circuit blocks. The power management circuit may, when the first functional circuit block is in a sleep state, set a power state of the third functional block in accordance with that of the second functional circuit block.
    Type: Application
    Filed: December 3, 2018
    Publication date: July 18, 2019
    Inventors: Shih-Chieh Wen, Jong-Suk Lee, Ramesh B. Gunna