Patents by Inventor Randolph J. Smiley

Randolph J. Smiley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150014217
    Abstract: Improved yields of fuels and/or lubricants from a resid or other heavy oil feed can be achieved using slurry hydroconversion to convert at least about 90 wt % of the feed. The converted portion of the feed can then be passed into one or more hydroprocessing stages. An initial processing stage can be a hydrotreatment stage for additional removal of contaminants and for passivation of high activity functional groups that may be created during slurry hydroconversion. The hydrotreatment effluent can then be fractionated to separate naphtha boiling range fractions from distillate fuel boiling range fractions and lubricant boiling range fractions. At least the lubricant boiling range fraction can then be hydrocracked to improve the viscosity properties. The hydrocracking effluent can also be dewaxed to improve the cold flow properties. The hydrocracked and/or dewaxed product can then be optionally hydrofinished.
    Type: Application
    Filed: June 19, 2014
    Publication date: January 15, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Randolph J. Smiley, Ajit Bhaskar Dandekar, Ramanathan Sundararaman, Rustom Merwan Billimoria, Thomas Francis Degnan, JR.
  • Publication number: 20150014216
    Abstract: Systems and methods are provided for slurry hydroconversion of a heavy oil feed, such as an atmospheric or vacuum resid. The systems and methods allow for slurry hydroconversion using catalysts with enhanced activity. The catalysts with enhanced activity can be used in conjunction with demetallization catalysts or catalysts that can be recycled as a side product from a complementary refinery process.
    Type: Application
    Filed: June 19, 2014
    Publication date: January 15, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Ramanathan Sundararaman, Thomas Francis Degnan, JR., Rustom Merwan Billimoria, Keith Wilson, Randolph J. Smiley, Jacob Johannes Thiart
  • Publication number: 20150008157
    Abstract: Systems and methods are provided for use of coking and slurry hydroconversion for conversion of heavy oil feeds. The combination of coking and slurry hydroconversion allows for improved yield of liquid products while reducing or minimizing the consumption of hydrogen in slurry hydroconversion reaction stages. Coking and slurry hydroconversion can be combined by segregating feeds based on Conradson carbon residue. Alternatively, slurry hydroconversion can be used to process unconverted bottoms from a coking process.
    Type: Application
    Filed: June 19, 2014
    Publication date: January 8, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Randolph J. Smiley, Anjaneya Sarma KOVVALI, David G. HAMMOND, Grace Shi Qian YEO
  • Publication number: 20140374314
    Abstract: Systems and methods are provided for slurry hydroconversion of a heavy oil feed, such as an atmospheric or vacuum resid. The systems and methods allow for slurry hydroconversion using catalysts with enhanced activity and/or catalysts that can be recycled as a side product from a complementary refinery process.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 25, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Ramanathan SUNDARARAMAN, Thomas Francis DEGNAN, JR., Rustom Merwan BILLIMORIA, Natalie Ann FASSBENDER, Manuel A. FRANCISCO, Anjaneya Sarma KOVVALI, Randolph J. SMILEY, John Peter GREELEY, William Ernest LEWIS, Roby BEARDEN, JR.
  • Patent number: 8673134
    Abstract: A method for the removal of nitrogen compounds from FCC feed or from catalytically cracked distillates including FCC cycle oils by using formaldehyde to selectively couple organic heterocyclic nitrogen species in the FCC feed or FCC distillate to form higher boiling coupling products out of the boiling range of FCC distillate. Removal of the nitrogenous compounds improves the operation of subsequent hydrodesulfurization steps needed for the distillate fraction to conform to low sulfur standards. The formaldehyde is preferably used in the form of paraformaldehyde. The reaction between the nitrogenous compounds in the cycle oil fraction with the formaldehyde is conveniently carried out in the cycle oil pumparound circuit of the FCC main column.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: March 18, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stacey E. Siporin, David Thomas Ferrughelli, Steven S. Lowenthal, Randolph J. Smiley, Alan Roy Katritzky, Bruce R. Cook
  • Publication number: 20110277377
    Abstract: This invention provides low sulfur fuels, particularly low sulfur bunker fuels, comprising hydroprocessed pyrolysis oil. The hydroprocessed pyrolysis oil can be produced using a catalyst suited to processing pyrolysis oils that may be relatively high in water content and under relatively low severity conditions to limit water formation, while making the hydroprocessed pyrolysis oil more stable than prior to hydroprocessing. The pyrolysis oil can be converted to a more stable hydroprocessed product, e.g., by converting at least a majority of the aldehydes, ketones, and/or carboxylic acids in the pyrolysis oil to more highly stable compounds, such as alcohols. The hydroprocessed product can be particularly suited as a blend component for producing a variety of reduced sulfur fuels.
    Type: Application
    Filed: May 12, 2011
    Publication date: November 17, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: William J. Novak, Randolph J. Smiley, Richard J. Quann, Karlton J. Hickey
  • Publication number: 20110132806
    Abstract: A method for the removal of nitrogen compounds from FCC feed or from catalytically cracked distillates including FCC cycle oils by using formaldehyde to selectively couple organic heterocyclic nitrogen species in the FCC feed or FCC distillate to form higher boiling coupling products out of the boiling range of FCC distillate. Removal of the nitrogenous compounds improves the operation of subsequent hydrodesulfurization steps needed for the distillate fraction to conform to low sulfur standards. The formaldehyde is preferably used in the form of paraformaldehyde. The reaction between the nitrogenous compounds in the cycle oil fraction with the formaldehyde is conveniently carried out in the cycle oil pumparound circuit of the FCC main column.
    Type: Application
    Filed: October 20, 2010
    Publication date: June 9, 2011
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Stacey E. Siporin, David Thomas Ferrughelli, Steven S. Lowenthal, Randolph J. Smiley, Alan Roy Katritzky, Bruce R. Cook
  • Patent number: 7713407
    Abstract: A hydrocracking process for converting a petroleum feedstock to higher gravity, lower sulfur products, especially ultra low sulfur road diesel fuel. The process may be operated as a single-stage or two-stage hydrocracking. In each case, a hydrocracking step is followed directly by a post-treat hydrodesulfurization zone using a bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least two Group VIB metals with a ratio of Group VIB metal to Group VIII non-noble metal is from about 10:1 to about 1:10. In the two-stage option with interstage ammonia removal, the initial hydrocracking step may be followed by hydrodesulfurization using the bulk multimetallic catalyst prior to the ammonia removal which is followed by the second hydrocracking step. A final hydrodesulfurization over the bulk multimetallic catalyst may follow. The hydrodesulfurization over the bulk multimetallic catalyst is carried out at a pressure of at least 25 barg and preferably at least 40 barg.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: May 11, 2010
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: William J. Tracy, III, Chuansheng Bai, Robert A. Bradway, William E. Lewis, Randolph J. Smiley
  • Patent number: 7576023
    Abstract: Naphtha is selectively hydrodesulfurized in the presence of a sulfided, treated catalyst comprising at least a Group VIB metal catalytic component, to produce sulfur-reduced naphtha with reduced olefin loss due to saturation. The catalyst is treated with hydrogen, a selectively deactivating agent which deactivates its hydrogenation activity, and a protective agent which preserves its hydrodesulfurization activity during the treatment.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: August 18, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Garland B. Brignac, Michele S. Touvelle, Randolph J. Smiley
  • Publication number: 20070278135
    Abstract: A hydrocracking process for converting a petroleum feedstock to higher gravity, lower sulfur products, especially ultra low sulfur road diesel fuel. The process may be operated as a single-stage or two-stage hydrocracking. In each case, a hydrocracking step is followed directly by a post-treat hydrodesulfurization zone using a bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least two Group VIB metals with a ratio of Group VIB metal to Group VIII non-noble metal is from about 10:1 to about 1:10. In the two-stage option with interstage ammonia removal, the initial hydrocracking step may be followed by hydrodesulfurization using the bulk multimetallic catalyst prior to the ammonia removal which is followed by the second hydrocracking step. A final hydrodesulfurization over the bulk multimetallic catalyst may follow. The hydrodesulfurization over the bulk multimetallic catalyst is carried out at a pressure of at least 25 barg and preferably at least 40 barg.
    Type: Application
    Filed: June 2, 2006
    Publication date: December 6, 2007
    Inventors: William J. Tracy, Chuansheng Bai, Robert A. Bradway, William E. Lewis, Randolph J. Smiley
  • Patent number: 6893554
    Abstract: Naphtha is selectively hydrodesulfurized in the presence of a sulfided, treated catalyst comprising at least a Group VIB metal catalytic component, to produce sulfur-reduced naphtha with reduced olefin loss due to saturation. The catalyst is treated with hydrogen, a selectively deactivating agent which deactivates its hydrogenation activity, and a protective agent which preserves its hydrodesulfurization activity during the treatment.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: May 17, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Garland B. Brignac, Michele S. Touvelle, Randolph J. Smiley
  • Publication number: 20030217952
    Abstract: Naphtha is selectively hydrodesulfurized in the presence of a sulfided, treated catalyst comprising at least a Group VIB metal catalytic component, to produce sulfur-reduced naphtha with reduced olefin loss due to saturation. The catalyst is treated with hydrogen, a selectively deactivating agent which deactivates its hydrogenation activity, and a protective agent which preserves its hydrodesulfurization activity during the treatment.
    Type: Application
    Filed: February 27, 2003
    Publication date: November 27, 2003
    Inventors: Garland B. Brignac, Michele S. Touvelle, Randolph J. Smiley