Patents by Inventor Rebecca Gottlieb

Rebecca Gottlieb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8086323
    Abstract: A system and method of sensing multiple parameters. The method may include implanting an implantable sensor in a patient and reading an output from at least one of the implantable sensing elements. The implantable sensor may have a housing within which are disposed a plurality of implantable sensing elements. At least one of the implantable sensing elements may respond to lactate. In addition, a medical professional may administer to the patient for myocardial ischemia, myocardial infarction angina, sepsis based on the output read. A medical professional may also administer to the patient having an implantable cardiovascular defibrillator or who is receiving extracorporeal membrane oxygenation. The method may be used in a surgical or intensive care environment.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: December 27, 2011
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Bahar Reghabi, Rebecca Gottlieb, Rajiv Shah, Bradley Enegren
  • Patent number: 7912525
    Abstract: A method and apparatus for enhancing the integrity of an implantable sensor. Voids formed between an outer tubing and a sensor substrate or spacing element may be back-filled with a curable, implantable material, minimizing the extent to which unwanted fluids diffuse within the sensor. An enzyme or protein matrix pellet below the sensor window may be pre-treated with a reducing agent to enhance its bond stability, and to reduce undesired swelling that may cause the sensor window to detach or leak. The bonding between the enzyme pellet and a hydrogel layer may be reinforced by application of an intervening bonding layer of a protein material, such as human serum albumin (HSA). The size of the window may be minimized by minimizing the size of an underlying electrode, providing reduced flux and lengthening sensor. A coating may be deposited on the surface of the sensor leads, providing stiffening and lubrication.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: March 22, 2011
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rajiv Shah, Yanan Zhang, Rebecca Gottlieb, Bahar Reghabi, Michael Miller
  • Publication number: 20110046457
    Abstract: A multilumen catheter having tubings extending into lumens within the catheter. The lumens may be used for blood, drugs or other medicants. The lumens may also be used for sensors. The junction element, external to the patient, connects the tubings to the lumens. The tubings, also external to the patient, connect to infusion members, to which one or more infusion systems may be connected to deliver blood, drugs and other medicants to the patient. A sensor having a sensing element may extend through the sensor lumen and be positioned internal to the patient for physiological parameter sensing. An external portion of the sensor may be connected to associated electronics to provide automatic monitoring of the physiological parameters and automatic delivery and control of the infusants.
    Type: Application
    Filed: November 1, 2010
    Publication date: February 24, 2011
    Inventors: Rebecca Gottlieb, Rajiv Shah, Mary M. Morris, Victor Giron, Michael E. Miller, Bradley J. Enegren
  • Patent number: 7833157
    Abstract: A multilumen catheter having tubings extending into lumens within the catheter. The lumens may be used for blood, drugs or other medicants. The lumens may also be used for sensors. The junction element, external to the patient, connects the tubings to the lumens. The tubings, also external to the patient, connect to infusion members, to which one or more infusion systems may be connected to deliver blood, drugs and other medicants to the patient. A sensor having a sensing element may extend through the sensor lumen and be positioned internal to the patient for physiological parameter sensing. An external portion of the sensor may be connected to associated electronics to provide automatic monitoring of the physiological parameters and automatic delivery and control of the infusants.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: November 16, 2010
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rebecca Gottlieb, Rajiv Shah, Mary M. Morris, Victor Giron, Michael E. Miller, Bradley J. Enegren
  • Patent number: 7634893
    Abstract: A packaging system for hydrating sterile devices without comprising the integrity of the sterilization. The packaging system may include an enclosure for enclosing a device requiring hydration, a container containing a hydrate, a base located within the interior of the enclosure and an activating member located within the interior of the enclosure. The container and the device may be located within a receptacle. The receptacle may rest on the base and the activating member may be affixed on top of the receptacle. A force may be exerted on an exterior portion of the enclosure such that the activating member pushes on the receptacle and crushes or ruptures the container. The hydrate located within the container is then released to the device, thereby hydrating the device without breaking the seal of the enclosure. The sterilized environment is therefore maintained and the device is hydrated.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: December 22, 2009
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Rebecca Gottlieb, Aaron Swanson, Bahar Reghabi, Kevin Branch
  • Patent number: 7552522
    Abstract: A method and apparatus for enhancing the integrity of an implantable sensor. Voids formed between an outer tubing and a sensor substrate or spacing element may be back-filled with a curable, implantable material, minimizing the extent to which unwanted fluids diffuse within the sensor. An enzyme or protein matrix pellet below the sensor window may be pre-treated with a reducing agent to enhance its bond stability, and to reduce undesired swelling that may cause the sensor window to detach or leak. The bonding between the enzyme pellet and a hydrogel layer may be reinforced by application of an intervening bonding layer of a protein material, such as human serum albumin (HSA). The size of the window may be minimized by minimizing the size of an underlying electrode, providing reduced flux and lengthening sensor. A coating may be deposited on the surface of the sensor leads, providing stiffening and lubrication.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: June 30, 2009
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rajiv Shah, Yanan Zhang, Rebecca Gottlieb, Bahar Reghabi, Michael Miller
  • Patent number: 7500949
    Abstract: A multilumen catheter having tubings extending into lumens within the catheter. The lumens may be used for blood, drugs or other medicants. The lumens may also be used for sensors. The junction element, external to the patient, connects the tubings to the lumens. The tubings, also external to the patient, connect to infusion members, to which one or more infusion systems may be connected to deliver blood, drugs and other medicants to the patient. A sensor having a sensing element may extend through the sensor lumen and be positioned internal to the patient for physiological parameter sensing. An external portion of the sensor may be connected to associated electronics to provide automatic monitoring of the physiological parameters and automatic delivery and control of the infusants.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: March 10, 2009
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rebecca Gottlieb, Rajiv Shah, Mary M. Morris, Victor Giron, Michael E. Miller, Bradley J. Enegren
  • Publication number: 20080289300
    Abstract: A packaging system for hydrating sterile devices without comprising the integrity of the sterilization. The packaging system may include an enclosure for enclosing a device requiring hydration, a container containing a hydrate, a base located within the interior of the enclosure and an activating member located within the interior of the enclosure. The container and the device may be located within a receptacle. The receptacle may rest on the base and the activating member may be affixed on top of the receptacle. A force may be exerted on an exterior portion of the enclosure such that the activating member pushes on the receptacle and crushes or ruptures the container. The hydrate located within the container is then released to the device, thereby hydrating the device without breaking the seal of the enclosure. The sterilized environment is therefore maintained and the device is hydrated.
    Type: Application
    Filed: August 8, 2008
    Publication date: November 27, 2008
    Inventors: Rebecca Gottlieb, Aaron Swanson, Bahar Reghabi, Kevin Branch
  • Publication number: 20080221509
    Abstract: A multilumen catheter having tubings extending into lumens within the catheter. The lumens may be used for blood, drugs or other medicants. The lumens may also be used for sensors. The junction element, external to the patient, connects the tubings to the lumens. The tubings, also external to the patient, connect to infusion members, to which one or more infusion systems may be connected to deliver blood, drugs and other medicants to the patient. A sensor having a sensing element may extend through the sensor lumen and be positioned internal to the patient for physiological parameter sensing. An external portion of the sensor may be connected to associated electronics to provide automatic monitoring of the physiological parameters and automatic delivery and control of the infusants.
    Type: Application
    Filed: May 15, 2008
    Publication date: September 11, 2008
    Inventors: Rebecca Gottlieb, Rajiv Shah, Mary M. Morris, Victor Giron, Michael E. Miller, Bradley J. Enegren
  • Patent number: 7415811
    Abstract: A packaging system for hydrating sterile devices without comprising the integrity of the sterilization. The packaging system may include an enclosure for enclosing a device requiring hydration, a container containing a hydrate, a base located within the interior of the enclosure and an activating member located within the interior of the enclosure. The container and the device may be located within a receptacle. The receptacle may rest on the base and the activating member may be affixed on top of the receptacle. A force may be exerted on an exterior portion of the enclosure such that the activating member pushes on the receptacle and crushes or ruptures the container. The hydrate located within the container is then released to the device, thereby hydrating the device without breaking the seal of the enclosure. The sterilized environment is therefore maintained and the device is hydrated.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: August 26, 2008
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rebecca Gottlieb, Aaron Swanson, Bahar Reghabi, Kevin Branch
  • Publication number: 20080064943
    Abstract: A system is provided for sensing blood glucose data of a patient. The system includes a sensor, user interface, and an optional auxiliary device. If the connection between the sensor and user interface is by a wire, the sensor remains powered when the wire is disconnected. The communication between the sensor and the user interface may be wireless. The auxiliary device can be a patient monitor or other display or signal device, which displays information about the blood glucose data collected by the sensor. The sensor is connected to sensor electronics, which include a sensor power supply, a voltage regulator, and optionally a memory and processor.
    Type: Application
    Filed: October 30, 2007
    Publication date: March 13, 2008
    Inventors: Cary Talbot, John Mastrototaro, Rajiv Shah, Edward Chernoff, John Mueller, Varaz Shahmirian, Richard Purvis, Wayne Morgan, Rebecca Gottlieb
  • Publication number: 20070244383
    Abstract: A system is provided for sensing blood glucose data of a patient. The system includes a sensor, user interface, and an optional auxiliary device. If the connection between the sensor and user interface is by a wire, the sensor remains powered when the wire is disconnected. The communication between the sensor and the user interface may be wireless. The auxiliary device can be a patient monitor or other display or signal device, which displays information about the blood glucose data collected by the sensor. The sensor is connected to sensor electronics, which include a sensor power supply, a voltage regulator, and optionally a memory and processor.
    Type: Application
    Filed: May 7, 2007
    Publication date: October 18, 2007
    Applicant: Medtronic Minimed, Inc.
    Inventors: Cary Talbot, John Mastrototaro, Rajiv Shah, Edward Chernoff, John Mueller, Varaz Shahimirian, Richard Purvis, Wayne Morgan, Rebecca Gottlieb
  • Publication number: 20070173711
    Abstract: A thin film sensor, such as a glucose sensor, is provided for transcutaneous placement at a selected site within the body of a patient. The sensor includes several sensor layers that include conductive layers and includes a proximal segment defining conductive contacts adapted for electrical connection to a suitable monitor, and a distal segment with sensor electrodes for transcutaneous placement. The sensor electrode layers are disposed generally above each other, for example with the reference electrode above the working electrode and the working electrode above the counter electrode. The electrode layers are separated by dielectric layer.
    Type: Application
    Filed: September 23, 2005
    Publication date: July 26, 2007
    Applicant: Medtronic Minimed, Inc.
    Inventors: Rajiv Shah, Rebecca Gottlieb
  • Patent number: 7247138
    Abstract: A reusable analyte sensor site for use with a replaceable analyte sensor for determining a level of an analyte includes a site housing material and a resealable insertion site coupled to one end of the site housing material. Preferably, the site housing material is formed to have an interior cavity with an opening. The site housing material is selected to promote tissue ingrowth and vascularization, and yet be free of tissue ingress. Also, the site housing material permits the analyte to pass through the site housing material to the interior cavity to permit measurement by the replaceable analyte sensor. The resealable insertion site provides a for inserting the replaceable analyte sensor into the interior cavity of the site housing material.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: July 24, 2007
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Bahar Reghabi, Rajiv Shah, Eunjoo Jin, Rebecca Gottlieb, Michael E. Miller, Nannette M. Van Antwerp, Bradley J. Enegren, William P. Van Antwerp, John J. Mastrototaro
  • Publication number: 20070135698
    Abstract: Embodiments of the invention provide analyte sensors having optimized permselective membranes and methods for making and using such sensors. Embodiments of the invention also provide analyte sensors such as those having porous matrices coated with an analyte sensing composition and methods for making and using such sensors. Illustrative embodiments include electrochemical glucose sensors having glucose oxidase coatings.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 14, 2007
    Inventors: Rajiv Shah, Gopikrishnan Soundararajan, Rebecca Gottlieb, Udo Hoss, Eric Grovender, Shaun Pendo
  • Publication number: 20070079836
    Abstract: A reusable analyte sensor site for use with a replaceable analyte sensor for determining a level of an analyte includes a site housing and a resealable insertion site coupled to one end of the site housing. Preferably, the site housing is formed to have an interior cavity, and includes an outer membrane made of a material selected to promote vascularization and having a first pore size, and an inner membrane made of a material selected to be free of tissue ingress. Also, the site housing permits the analyte to pass through the site housing to the interior cavity to permit measurement by the replaceable analyte sensor. The resealable insertion site is provided for inserting the replaceable analyte sensor into the interior cavity of the site housing.
    Type: Application
    Filed: December 13, 2006
    Publication date: April 12, 2007
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Bahar Reghabi, Rajiv Shah, Eunjoo Jin, Rebecca Gottlieb, Michael Miller, Nannette Van Antwerp, Bradley Enegren, William Van Antwerp, John Mastrototaro
  • Publication number: 20070078319
    Abstract: A method and apparatus for enhancing the integrity of an implantable sensor. Voids formed between an outer tubing and a sensor substrate or spacing element may be back-filled with a curable, implantable material, minimizing the extent to which unwanted fluids diffuse within the sensor. An enzyme or protein matrix pellet below the sensor window may be pre-treated with a reducing agent to enhance its bond stability, and to reduce undesired swelling that may cause the sensor window to detach or leak. The bonding between the enzyme pellet and a hydrogel layer may be reinforced by application of an intervening bonding layer of a protein material, such as human serum albumin (HSA). The size of the window may be minimized by minimizing the size of an underlying electrode, providing reduced flux and lengthening sensor. A coating may be deposited on the surface of the sensor leads, providing stiffening and lubrication.
    Type: Application
    Filed: November 30, 2006
    Publication date: April 5, 2007
    Inventors: Rajiv Shah, Yanan Zhang, Rebecca Gottlieb, Bahar Reghabi, Michael Miller
  • Publication number: 20070073129
    Abstract: A flexible mounting base to hold a sensor at an infusion site, the sensor being a removable in vivo sensor for monitoring analyte concentration level in a patient, such as blood glucose (BG) level. The mounting base comprises a flexible adhesive that anchors the flexible sensor set at an infusion site to provide stability for the sensor set in a convenient and comfortable manner. Placement of the mounting base onto the patient's skin causes the insertion needle to pierce the skin for transcutaneous placement of the cannula with the sensor therein. The insertion needle can then be withdrawn to leave the cannula and sensor at the selected insertion position, with the distal segment of the sensor being exposed to patient extracellular fluid via apertures formed in the cannula.
    Type: Application
    Filed: September 23, 2005
    Publication date: March 29, 2007
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Rajiv Shah, Rebecca Gottlieb, Eric Larson
  • Patent number: 7166074
    Abstract: A reusable analyte sensor site for use with a replaceable analyte sensor for determining a level of an analyte includes a site housing and a resealable insertion site coupled to one end of the site housing. Preferably, the site housing is formed to have an interior cavity, and includes an outer membrane made of a material selected to promote vascularization and having a first pore size, and an inner membrane made of a material selected to be free of tissue ingress. Also, the site housing permits the analyte to pass through the site housing to the interior cavity to permit measurement by the replaceable analyte sensor. The resealable insertion site is provided for inserting the replaceable analyte sensor into the interior cavity of the site housing.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: January 23, 2007
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Bahar Reghabi, Rajiv Shah, Eunjoo Jin, Rebecca Gottlieb, Michael E. Miller, Nannette M. Van Antwerp, Bradley J. Enegren, William P. Van Antwerp, John J. Mastrototaro
  • Patent number: 7162289
    Abstract: A method and apparatus for enhancing the integrity of an implantable sensor. Voids formed between an outer tubing and a sensor substrate or spacing element may be back-filled with a curable, implantable material, minimizing the extent to which unwanted fluids diffuse within the sensor. An enzyme or protein matrix pellet below the sensor window may be pre-treated with a reducing agent to enhance its bond stability, and to reduce undesired swelling that may cause the sensor window to detach or leak. The bonding between the enzyme pellet and a hydrogel layer may be reinforced by application of an intervening bonding layer of a protein material, such as human serum albumin (HSA). The size of the window may be minimized by minimizing the size of an underlying electrode, providing reduced flux and lengthening sensor. A coating may be deposited on the surface of the sensor leads, providing stiffening and lubrication.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: January 9, 2007
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rajiv Shah, Yanan Zhang, Rebecca Gottlieb, Bahar Reghabi, Michael Miller