Patents by Inventor Rebecca L. Siegelman

Rebecca L. Siegelman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230173426
    Abstract: An adsorption material is disclosed that comprises a metal-organic framework and a plurality of ligands. The metal-organic framework comprising a plurality of metal ions. Each respective ligand in the plurality of ligands is amine appended to a respective metal ion in the plurality of metal ions of the metal-organic framework. Each respective ligand in the plurality of ligands comprises a substituted 1,3-propanediamine. The adsorbent has a CO2 adsorption capacity of greater than 2.50 mmol/g at 150 mbar CO2 at 40° C. Moreover, the adsorbent is configured to regenerate at less than 120° C. An example ligand is diamine 2,2-dimethyl-1,3-propanediamine. An example of the metal-organic framework is Mg2(dobpdc), where dobpdc4? is 4,4?-dioxidobiphenyl-3,3?-dicarboxylate. Example applications for the adsorption material are removal of carbon dioxide from flue gas and biogasses.
    Type: Application
    Filed: September 30, 2022
    Publication date: June 8, 2023
    Inventors: Jeffrey R. Long, Phillip J. Milner, Rebecca L. Siegelman
  • Patent number: 11612876
    Abstract: Primary, secondary (1°,2°) alkylethylenediamine- and alkylpropylenediamine-appended variants of metal-organic framework are provided for CO2 capture applications. Increasing the size of the alkyl group on the secondary amine enhances the stability to diamine volatilization from the metal sites. Two-step adsorption/desorption profiles are overcome by minimzing steric interactions between adjacent ammonium carbamate chains. For instance, the isoreticularly expanded framework Mg2(dotpdc) (dotpdc4?=4,4?-dioxido-[1,1?:4?,1?-terphenyl]-3,3?-dicarboxylate), yields diamine-appended adsorbents displaying a single CO2 adsorption step. Further, use of the isomeric framework Mg-IRMOF-74-II or Mg2(pc-dobpdc) (pc-dobpdc4?=3,3-dioxidobiphenyl-4,4-dicarboxylate, pc=para-carboxylate) also leads to a single CO2 adsorption step with bulky diamines.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: March 28, 2023
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Jeffrey R. Long, Simon Christopher Weston, Phillip J. Milner, Jeffrey D. Martell, Rebecca L. Siegelman
  • Patent number: 11458431
    Abstract: An adsorption material is disclosed that comprises a metal-organic framework and a plurality of ligands. The metal-organic framework comprising a plurality of metal ions. Each respective ligand in the plurality of ligands is amine appended to a respective metal ion in the plurality of metal ions of the metal-organic framework. Each respective ligand in the plurality of ligands comprises a substituted 1,3-propanediamine. The adsorbent has a CO2 adsorption capacity of greater than 2.50 mmol/g at 150 mbar CO2 at 40° C. Moreover, the adsorbent is configured to regenerate at less than 120° C. An example ligand is diamine 2,2-dimethyl-1,3-propanediamine. An example of the metal-organic framework is Mg2(dobpdc), where dobpdc4? is 4,4?-dioxidobiphenyl-3,3?-dicarboxylate. Example applications for the adsorption material are removal of carbon dioxide from flue gas and biogasses.
    Type: Grant
    Filed: February 17, 2018
    Date of Patent: October 4, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jeffrey R. Long, Phillip J. Milner, Rebecca L. Siegelman
  • Publication number: 20210370267
    Abstract: Primary, secondary (1°,2°) alkylethylenediamine- and alkylpropylenediamine-appended variants of metal-organic framework are provided for CO2 capture applications. Increasing the size of the alkyl group on the secondary amine enhances the stability to diamine volatilization from the metal sites. Two-step adsorption/desorption profiles are overcome by minimzing steric interactions between adjacent ammonium carbamate chains. For instance, the isoreticularly expanded framework Mg2(dotpdc) (dotpdc4?=4,4?-dioxido-[1,1?:4?,1?-terphenyl]-3,3?-dicarboxylate), yields diamine-appended adsorbents displaying a single CO2 adsorption step. Further, use of the isomeric framework Mg-IRMOF-74-II or Mg2(pc-dobpdc) (pc-dobpdc4?=3,3-dioxidobiphenyl-4,4-dicarboxylate, pc=para-carboxylate) also leads to a single CO2 adsorption step with bulky diamines.
    Type: Application
    Filed: February 17, 2021
    Publication date: December 2, 2021
    Inventors: Jeffrey R. Long, Simon Christopher Weston, Phillip J. Milner, Jeffrey D. Martell, Rebecca L. Siegelman
  • Patent number: 11014067
    Abstract: Polyamines with lengths carefully tailored to the framework dimensions are appended to metal-organic frameworks such as Mg2(dobpdc) (dobpdc4-=4,4?-dioxidobiphenyl-3,3?-dicarboxylate) with the desired loading of one polyamine per two metal sites. The polyamine-appended materials show step-shaped adsorption and desorption profiles due to a cooperative CO2 adsorption/desorption mechanism. Several disclosed polyamine-appended materials exhibit strong ability to capture CO2 from various compositions. Increased stability of amines in the framework has been achieved using high molecular weight polyamine molecules that coordinate multiple metal sites in the framework. The preparation of these adsorbents as well as their characterization are provided.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: May 25, 2021
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Simon C. Weston, Joseph M. Falkowski, Jeffrey R. Long, Eugene J. Kim, Jeffrey D. Martell, Phillip J. Milner, Rebecca L. Siegelman
  • Publication number: 20210129071
    Abstract: An adsorption material is disclosed that comprises a metal-organic framework and a plurality of Hgands. The metal-organic framework comprising a plurality of metal ions. Each respective ligand in the plurality of ligands is amine appended to a respective metal ion in the plurality of metal ions of the metal-organic framework. Each respective ligand in the plurality of ligands comprises a substituted 1,3-propanediamine. The adsorbent has a CO2 adsorption capacity of greater than 2.50 mmol/g at 150 mbar CO2 at 40° C., Moreover, the adsorbent is configured to regenerate at less than 120° C. An example ligand is diamine 2,2-dimethyl-1,3-propane-diamine. An example of the metal-organic framework is Mg2(dobpdc), where dobpdc4? is 4,4?-dioxidobiphenyl-3,3?-dicarboxylate. Example applications for the adsorption material are removal of carbon dioxide from flue gas and biogasses.
    Type: Application
    Filed: February 17, 2018
    Publication date: May 6, 2021
    Inventors: Jeffrey R. Long, Eugene J. Kim, Phillip J. Milner, Rebecca L. Siegelman
  • Patent number: 10953385
    Abstract: Primary, secondary (1º,2º) alkylethylenediamine- and alkylpropylenediamine-appended variants of metal-organic framework are provided for CO2 capture applications. Increasing the size of the alkyl group on the secondary amine enhances the stability to diamine volatilization from the metal sites. Two-step adsorption/desorption profiles are overcome by minimizing steric interactions between adjacent ammonium carbamate chains. For instance, the isoreticularly expanded framework Mg2(dotpdc) (dotpdc4?=4,4?-dioxido-[1,1?:4?,1?-terphenyl]-3,3?-dicarboxylate), yields diamine-appended adsorbents displaying a single CO2 adsorption step. Further, use of the isomeric framework Mg-IRMOF-74-II or Mg2(pc-dobpdc) (pc-dobpdc4?=3,3-dioxidobiphenyl-4,4-dicarboxylate, pc=para-carboxylate) also leads to a single CO2 adsorption step with bulky diamines.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: March 23, 2021
    Assignees: The Regents of the University of California, ExxonMobil Research and Engineering Company
    Inventors: Jeffrey R. Long, Simon Christopher Weston, Phillip J. Milner, Jeffrey D. Martell, Rebecca L. Siegelman
  • Patent number: 10780388
    Abstract: Achieving the selective and reversible adsorption of CO2 from humid, low partial pressures streams such as the flue gas resulting from the combustion of natural gas in combined cycle power plants (4% CO2) is challenging due to the need for high thermal, oxidative, and hydrolytic stability as well as moderate regeneration conditions to reduce the energy of adsorption/desorption cycling. Appending cyclic primary, secondary diamines, exemplified by 2-(aminomethyl)piperidine (2-ampd), to the metal-organic frameworks Mg2(dobpdc) (dobpdc4?=4,4-dioxidobiphenyl-3,3-dicarboxylate), Mg2(dotpdc) (dotpdc4?=4,4?-dioxido-[1,1?:4?,1?-terphenyl]-3,3?-dicarboxylate) or Mg2(pc-dobpdc) (pc-dobpdc4?=dioxidobiphenyl-4,4?-dicarboxylate) produces adsorbents of the classes EMM-44, EMM-45, and EMM-46, respectively, that display step-shaped adsorption of CO2 at the partial pressures required for 90% capture from natural gas flue gas at temperatures up to or exceeding 60° C.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: September 22, 2020
    Assignees: The Regents of the University of California, ExxonMobil Research and Engineering Company
    Inventors: Jeffrey R. Long, Simon Christopher Weston, Phillip J. Milner, Rebecca L. Siegelman
  • Publication number: 20190126237
    Abstract: Polyamines with lengths carefully tailored to the framework dimensions are appended to metal-organic frameworks such as Mg2(dobpdc) (dobpdc4-=4,4?-dioxidobiphenyl-3,3?-dicarboxylate) with the desired loading of one polyamine per two metal sites. The polyamine-appended materials show step-shaped adsorption and desorption profiles due to a cooperative CO2 adsorption/desorption mechanism. Several disclosed polyamine-appended materials exhibit strong ability to capture CO2 from various compositions. Increased stability of amines in the framework has been achieved using high molecular weight polyamine molecules that coordinate multiple metal sites in the framework. The preparation of these adsorbents as well as their characterization are provided.
    Type: Application
    Filed: October 30, 2018
    Publication date: May 2, 2019
    Inventors: Simon C. Weston, Joseph M. Falkowski, Jeffrey R. Long, Eugene J. Kim, Jeffrey D. Martell, Phillip J. Milner, Rebecca L. Siegelman
  • Publication number: 20190060867
    Abstract: Primary, secondary (1º,2º) alkylethylenediamine- and alkylpropylenediamine-appended variants of metal-organic framework are provided for CO2 capture applications. Increasing the size of the alkyl group on the secondary amine enhances the stability to diamine volatilization from the metal sites. Two-step adsorption/desorption profiles are overcome by minimizing steric interactions between adjacent ammonium carbamate chains. For instance, the isoreticularly expanded framework Mg2(dotpdc) (dotpdc4?=4,4?-dioxido-[1,1?:4?,1?-terphenyl]-3,3?-dicarboxylate), yields diamine-appended adsorbents displaying a single CO2 adsorption step. Further, use of the isomeric framework Mg-IRMOF-74-II or Mg2(pc-dobpdc) (pc-dobpdc4?=3,3-dioxidobiphenyl-4,4-dicarboxylate, pc=para-carboxylate) also leads to a single CO2 adsorption step with bulky diamines.
    Type: Application
    Filed: July 25, 2018
    Publication date: February 28, 2019
    Inventors: Jeffrey R. Long, Simon Christopher Weston, Phillip J. Milner, Jeffrey D. Martell, Rebecca L. Siegelman
  • Publication number: 20190039015
    Abstract: Achieving the selective and reversible adsorption of CO2 from humid, low partial pressures streams such as the flue gas resulting from the combustion of natural gas in combined cycle power plants (4% CO2) is challenging due to the need for high thermal, oxidative, and hydrolytic stability as well as moderate regeneration conditions to reduce the energy of adsorption/desorption cycling. Appending cyclic primary, secondary diamines, exemplified by 2-(aminomethyl)piperidine (2-ampd), to the metal-organic frameworks Mg2(dobpdc) (dobpdc4?=4,4-dioxidobiphenyl-3,3-dicarboxylate), Mg2(dotpdc) (dotpdc4?=4,4?-dioxido-[1,1?:4?,1?-terphenyl]-3,3?-dicarboxylate) or Mg2(pc-dobpdc) (pc-dobpdc4?=dioxidobiphenyl-4,4?-dicarboxylate) produces adsorbents of the classes EMM-44, EMM-45, and EMM-46, respectively, that display step-shaped adsorption of CO2 at the partial pressures required for 90% capture from natural gas flue gas at temperatures up to or exceeding 60° C.
    Type: Application
    Filed: August 3, 2018
    Publication date: February 7, 2019
    Inventors: Jeffrey R. Long, Simon Christopher Weston, Phillip J. Milner, Rebecca L. Siegelman
  • Publication number: 20180272314
    Abstract: The disclosure provides for diamine-appended metal-organic frameworks (MOFs), methods of making thereof, and methods of use thereof.
    Type: Application
    Filed: September 29, 2016
    Publication date: September 27, 2018
    Inventors: Jeffrey R. Long, Thomas M. McDonald, Rebecca L. Siegelman, Joshua A. Thompson