Patents by Inventor Rei Hasegawa

Rei Hasegawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230130636
    Abstract: A communication apparatus mounted on a vehicle includes: a camera that captures a still image used for generating a map; a positioning circuit that positions a captured position of the still image; a control circuit that associates position information indicating the captured position with image data of the still image; and a communication circuit that establishes a radio communication with a roadside unit and transmits the image data by radio to the roadside unit, in which the control circuit rearranges an transmission order of the image data to be transmitted by radio to the roadside unit, based on the position information.
    Type: Application
    Filed: March 18, 2021
    Publication date: April 27, 2023
    Inventors: Noriyuki SHIMIZU, Hideki KANEMOTO, Yuzo MORIUCHI, Takeshi YASUNAGA, Rei HASEGAWA
  • Publication number: 20230124953
    Abstract: Provided are an information processing device, an information processing method, and a program that enable construction of a wireless system with consideration given to interference with the surroundings of a certain area. The information processing device is provided with: an evaluation unit which evaluates interference with the outside of a specific area caused by beams that are formed at transmission points set inside the specific area and that radiate in a plurality of directions; and a determination unit which determines, on the basis of the result of the evaluation of the interference, the beam width of at least some of the beams that radiate in the plurality of directions.
    Type: Application
    Filed: March 18, 2021
    Publication date: April 20, 2023
    Inventors: Hideki KANEMOTO, Yuzo MORIUCHI, Rei HASEGAWA
  • Publication number: 20230059198
    Abstract: The present invention contributes to providing a base station, an information processing device, a wireless communication method, and a program, with which it is possible to realize control considering power leaked outside a given area. The base station comprises: a control circuit that controls a beam formed in an indoor area, on the basis of a simulation result relating to a wireless propagation environment that includes propagation of radio waves from inside the indoor area to outside; and a communication circuit that communicates with a wireless instrument using the beam.
    Type: Application
    Filed: January 14, 2021
    Publication date: February 23, 2023
    Inventors: Yuzo MORIUCHI, Rei HASEGAWA
  • Publication number: 20230023406
    Abstract: Provided are an information processing device, an information processing method, and a program that enable construction of a wireless system with consideration given to interference with the surroundings of a certain area. This information processing device is provided with: a first evaluation unit that evaluates a distribution of first wireless radio waves entering the inside of a certain area when wireless radio waves are radiated from one or more transmission points set outside the area; and a determination unit that determines, on the basis of the evaluation result regarding the distribution of the first wireless radio waves, information about the disposition candidate position of a wireless base station to be disposed inside the area.
    Type: Application
    Filed: March 19, 2020
    Publication date: January 26, 2023
    Inventors: Rei HASEGAWA, Yuzo MORIUCHI, Hideki KANEMOTO
  • Patent number: 11226421
    Abstract: According to one embodiment, a radiation detector includes a first layer including a metal complex, a first conductive layer, a second conductive layer provided between the first layer and the first conductive layer, and an organic semiconductor layer provided between the first conductive layer and the second conductive layer.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: January 18, 2022
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Fumihiko Aiga, Atsushi Wada, Kohei Nakayama, Yuko Nomura, Sara Yoshio, Rei Hasegawa, Isao Takasu
  • Patent number: 11158751
    Abstract: According to an embodiment, a photoelectric conversion element includes a photoelectric conversion layer that converts light to charges. The photoelectric conversion layer contains oligothiophene and fullerene selected from a group including a fullerene and derivatives thereof. A content ratio of the oligothiophene and the fullerene is 500:1 to 5:1 by weight.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: October 26, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsushi Wada, Rei Hasegawa
  • Patent number: 11152575
    Abstract: According to one embodiment, a photoelectric conversion element includes a first conductive layer, a second conductive layer, and an intermediate layer provided between the first conductive layer and the second conductive layer. The intermediate layer includes a first semiconductor region and a second semiconductor region. The first semiconductor region is of an n-type, and the second semiconductor region is of a p-type. The first semiconductor region includes at least one selected from the group consisting of fullerene and a fullerene derivative. The second semiconductor region includes at least one selected from the group consisting of quinacridone and a quinacridone derivative. A ratio of a weight of the second semiconductor region per unit volume to a weight of the first semiconductor region per unit volume in the intermediate layer is greater than 5.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: October 19, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsushi Wada, Isao Takasu, Rei Hasegawa
  • Patent number: 11125895
    Abstract: According to an embodiment, a detection element includes a first electrode, a second electrode, an organic conversion layer, and a third electrode. The organic conversion layer is provided between the first electrode and the second electrode, and is configured to convert energy of a radiant ray into a charge. The third electrode is provided inside the organic conversion layer. Bias is applied to the third electrode.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: September 21, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kohei Nakayama, Fumihiko Aiga, Go Kawata, Isao Takasu, Yuko Nomura, Satomi Taguchi, Hyangmi Jung, Atsushi Wada, Rei Hasegawa
  • Patent number: 11081657
    Abstract: According to one embodiment, a radiation detector includes a first conductive layer, a second conductive layer, and a first layer. The first layer is provided between the first conductive layer and the second conductive layer. The first layer includes a first region and a second region. The first region includes a metal complex including a first metallic element. The second region includes an organic semiconductor material. The first metallic element includes at least one selected from the group consisting of Ir, Pt, Pb, and Cu.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: August 3, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Atsushi Wada, Isao Takasu, Rei Hasegawa, Fumihiko Aiga
  • Patent number: 11037993
    Abstract: A detection device according to an embodiment of the present disclosure includes a plurality of semiconductor layers, each including a plurality of electrode regions and a semiconductor region. The plurality of electrode regions are: arranged at intervals in a cross direction crossing a thickness direction; configured to generate electric charges by a photoelectric effect of irradiation of radiation; and configured to produce an electric field in the cross direction by voltage application. The semiconductor region is provided at least between the electrode regions adjacent to one another in the cross direction. The plurality of semiconductor layers are stacked in the thickness direction.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: June 15, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kohei Nakayama, Fumihiko Aiga, Atsushi Wada, Isao Takasu, Yuko Nomura, Sara Yoshio, Rei Hasegawa
  • Publication number: 20210055435
    Abstract: According to one embodiment, a radiation detector includes a first layer including a metal complex, a first conductive layer, a second conductive layer provided between the first layer and the first conductive layer, and an organic semiconductor layer provided between the first conductive layer and the second conductive layer.
    Type: Application
    Filed: March 11, 2020
    Publication date: February 25, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Fumihiko AIGA, Atsushi WADA, Kohei NAKAYAMA, Yuko NOMURA, Sara YOSHIO, Rei HASEGAWA, lsao TAKASU
  • Patent number: 10930861
    Abstract: According to one embodiment, a radiation detector includes a detection element. The detection element includes a first conductive layer, a second conductive layer, and an organic semiconductor layer provided between the first conductive layer and the second conductive layer. The organic semiconductor layer includes a first compound and a second compound. The first compound is bipolar. A thickness of the organic semiconductor layer is 50 ?m or more.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: February 23, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Isao Takasu, Hyangmi Jung, Kohei Nakayama, Yuko Nomura, Rei Hasegawa
  • Publication number: 20200395415
    Abstract: A detection device according to an embodiment of the present disclosure includes a plurality of semiconductor layers, each including a plurality of electrode regions and a semiconductor region. The plurality of electrode regions are: arranged at intervals in a cross direction crossing a thickness direction; configured to generate electric charges by a photoelectric effect of irradiation of radiation; and configured to produce an electric field in the cross direction by voltage application. The semiconductor region is provided at least between the electrode regions adjacent to one another in the cross direction. The plurality of semiconductor layers are stacked in the thickness direction.
    Type: Application
    Filed: February 28, 2020
    Publication date: December 17, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kohei NAKAYAMA, Fumihiko Aiga, Atsushi Wada, Isao Takasu, Yuko Nomura, Sara Yoshio, Rei Hasegawa
  • Patent number: 10840465
    Abstract: According to an embodiment, a producing method of a radiation detection element, includes: forming an organic semiconductor layer by applying an organic semiconductor solution onto a first conductive layer formed on a support substrate; forming a second conductive layer on the organic semiconductor layer; sealing a laminated body of the first conductive layer, the organic semiconductor layer, and the second conductive layer, formed on the support substrate, with a sealing member; and applying heat to the laminated body sealed with the sealing member. In at least one of forming of the organic layer and forming of the second conductive layer, a forming environment of the organic semiconductor layer and the second conductive layer are adjusted such that the solvent content of the organic semiconductor layer is in a predetermined range.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: November 17, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hyangmi Jung, Satomi Taguchi, Isao Takasu, Yuko Nomura, Rei Hasegawa
  • Publication number: 20200313094
    Abstract: According to one embodiment, a radiation detector includes a first conductive layer, a second conductive layer, and a first layer. The first layer is provided between the first conductive layer and the second conductive layer. The first layer includes a first region and a second region. The first region includes a metal complex including a first metallic element. The second region includes an organic semiconductor material. The first metallic element includes at least one selected from the group consisting of Ir, Pt, Pb, and Cu.
    Type: Application
    Filed: September 10, 2019
    Publication date: October 1, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Atsushi WADA, lsao TAKASU, Rei HASEGAWA, Fumihiko AIGA
  • Patent number: 10761222
    Abstract: According to an embodiment, a detection element includes a first electrode, a second electrode, an organic conversion layer, and a third electrode. A bias is applied to the first electrode. The organic conversion layer is arranged between the first electrode and the second electrode, and is configured to convert energy of a radiation into an electric charge. The third electrode is arranged in the organic conversion layer.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: September 1, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kohei Nakayama, Fumihiko Aiga, Go Kawata, Isao Takasu, Yuko Nomura, Satomi Taguchi, Hyangmi Jung, Atsushi Wada, Rei Hasegawa
  • Publication number: 20200264320
    Abstract: A radiation detector includes a first scintillator, a second scintillator, a first photoelectric conversion layer, and a second photoelectric conversion layer. The first scintillator converts ? rays into first scintillation light. The second scintillator converts the ? rays into second scintillation light. The first photoelectric conversion layer is provided between the first scintillator and the second scintillator and converts the first scintillation light into electric charges. The second photoelectric conversion layer is provided between the first photoelectric conversion layer and the second scintillator and converts the second scintillation light into electric charges. The first scintillator, the second scintillator, the first photoelectric conversion layer, and the second photoelectric conversion layer are each formed with an organic material as a main component. The thickness of the second scintillator is larger than the thickness of the first scintillator.
    Type: Application
    Filed: September 9, 2019
    Publication date: August 20, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Fumihiko AIGA, Rei Hasegawa, lsao Takasu
  • Patent number: 10595798
    Abstract: A detection apparatus according to an embodiment includes first detectors, a first electrode, second detectors and a second electrode. The first detectors detect a photon. The first electrode is electrically connected to each of the first detectors. The second detectors detect a photon. The second electrode is electrically connected to each of the second detectors. The number of first detectors is less than the number of second detectors.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: March 24, 2020
    Assignee: Canon Medical Systems Corporation
    Inventors: Go Kawata, Keita Sasaki, Rei Hasegawa
  • Publication number: 20200091440
    Abstract: According to one embodiment, a radiation detector includes a detection element. The detection element includes a first conductive layer, a second conductive layer, and an organic semiconductor layer provided between the first conductive layer and the second conductive layer. The organic semiconductor layer includes a first compound and a second compound. The first compound is bipolar. A thickness of the organic semiconductor layer is 50 ?m or more.
    Type: Application
    Filed: March 5, 2019
    Publication date: March 19, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Isao TAKASU, Hyangmi JUNG, Kohei NAKAYAMA, Yuko NOMURA, Rei HASEGAWA
  • Publication number: 20200083298
    Abstract: According to one embodiment, a radiation detector includes a first member, a first electrode, a second electrode, and an organic photoelectric conversion layer. The first member converts radiation into light and has a first surface. The first surface includes a first portion and a second portion. The first electrode is provided at the first portion. The second electrode is provided at the second portion. A first intermediate region of the organic photoelectric conversion layer is provided between the first electrode and the second electrode.
    Type: Application
    Filed: March 11, 2019
    Publication date: March 12, 2020
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Rei Hasegawa, Kohei Nakayama, Isao Takasu