Patents by Inventor Rian Draeger

Rian Draeger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11399721
    Abstract: Systems and methods for remote and host monitoring communication are disclosed. In some implementations, monitoring systems can comprise a host monitoring device associated with a Host communicatively coupled to one or more remote monitoring devices associated with Remote Monitors. The host monitoring device can send communications based at least in part on analyte measurements of a Host sensor and/or other contextual data giving such measurements context. Different remote monitoring devices can receive different communications based at least in part on the role of the respective Remote Monitors relative to the Host. These roles can be reflected in classifications of Remote Monitors.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: August 2, 2022
    Assignee: Dexcom, Inc.
    Inventors: Aarthi Mahalingam, Esteban Cabrera, Jr., Basab Dattaray, Rian Draeger, Laura J. Dunn, Derek James Escobar, Thomas Hall, Hari Hampapuram, Apurv Ullas Kamath, Katherine Yerre Koehler, Phil Mayou, Michael Robert Mensinger, Michael Levozier Moore, Andrew Attila Pal, Nicholas Polytaridis, Eli Reihman, Brian Christopher Smith
  • Patent number: 11382508
    Abstract: Methods and apparatus, including computer program products, are provided for remote monitoring. In some example implementations, there is provided a method. The method may include receiving, at a remote monitor, a notification message representative of an event detected, by a server, from analyte sensor data obtained from a receiver monitoring an analyte state of a host; presenting, at the remote monitor, the notification message to activate the remote monitor, wherein the remote monitor is configured by the server to receive the notification message to augment the receiver monitoring of the analyte state of the host; accessing, by the remote monitor, the server, in response to the presenting of the notification message; and receiving, in response to the accessing, information including at least the analyte sensor data. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: July 12, 2022
    Assignee: Dexcom, Inc.
    Inventors: Michael Robert Mensinger, Eric Cohen, Phil Mayou, Eli Reihman, Katherine Yerre Koehler, Rian Draeger, Angela Marie Traven
  • Publication number: 20220192609
    Abstract: Methods and apparatus, including computer program products, are provided for remote monitoring. In some example implementations, there is provided a method. The method may include receiving, at a remote monitor, a notification message representative of an event detected, by a server, from analyte sensor data obtained from a receiver monitoring an analyte state of a host; presenting, at the remote monitor, the notification message to activate the remote monitor, wherein the remote monitor is configured by the server to receive the notification message to augment the receiver monitoring of the analyte state of the host; accessing, by the remote monitor, the server, in response to the presenting of the notification message; and receiving, in response to the accessing, information including at least the analyte sensor data. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Application
    Filed: February 24, 2022
    Publication date: June 23, 2022
    Inventors: Eric COHEN, Brian Christopher SMITH, Michael Robert MENSINGER, Rian DRAEGER, Katherine Yerre KOEHLER, Leif N. BOWMAN, David PRICE, Shawn LARVENZ, Eli REIHMAN
  • Publication number: 20220160267
    Abstract: The present embodiments provide systems and methods for, among others, tracking sensor insertion locations in a continuous analyte monitoring system. Data gathered from sensor sessions can be used in different ways, such as providing a user with a suggested rotation of insertion locations, correlating data from a given sensor session with sensor accuracy and/or sensor session length, and providing a user with a suggested next insertion location based upon past sensor accuracy and/or sensor session length at that location.
    Type: Application
    Filed: December 13, 2021
    Publication date: May 26, 2022
    Inventors: Katherine Yerre KOEHLER, Leif N. BOWMAN, Rian DRAEGER, Laura DUNN, Eli REIHMAN
  • Patent number: 11222724
    Abstract: Disclosed are systems and methods for secure and seamless set up and modification of bolus calculator parameters for a bolus calculator tool by a health care provider (HCP). In one aspect, a method for enabling HCP set up of a bolus calculator includes providing a server accessible by both an HCP and a patient; upon login by the HCP, displaying, or transmitting for display, a fillable form, the fillable form including one or more fields for entry of one or more bolus calculator parameters; receiving data from the fillable form, the data corresponding to one or more bolus calculator parameters; and upon login by the patient, transmitting data to a device associated with the patient, the transmitted data based on the received data, where the transmitted data corresponds to one or more of the bolus calculator parameters in a format suitable for entry to a bolus calculator.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: January 11, 2022
    Assignee: DexCom, Inc.
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Esteban Cabrera, Jr., Alexandra Elena Constantin, Rian Draeger, Peter Galuardi, Hari Hampapuram, Matthew Lawrence Johnson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aarthi Mahalingam, Gary A. Morris, Philip Thomas Pupa, Peter C. Simpson, Brian Christopher Smith, Tomas C. Walker
  • Publication number: 20220000432
    Abstract: Disclosed are systems and methods for generating graphical displays of analyte data and/or health information. In some implementations, the graphical displays are generating based on a self-referential dataset that are modifiable based on identified portions of the data. The modified graphical displays can indicate features in the analyte data of a host.
    Type: Application
    Filed: September 21, 2021
    Publication date: January 6, 2022
    Inventors: Esteban Cabrera, JR., Lauren Danielle Armenta, Scott M. Belliveau, Jennifer Blackwell, Leif N. Bowman, Rian Draeger, Arturo Garcia, Timothy Joseph Goldsmith, John Michael Gray, Andrea Jean Jackson, Apurv Ullas Kamath, Katherine Yerre Koehler, Paul Kramer, Aditya Sagar Mandapaka, Michael Robert Mensinger, Sumitaka Mikami, Gary A. Morris, Hemant Mahendra Nirmal, Paul Noble-Campbell, Philip Thomas Pupa, Eli Reihman, Peter C. Simpson, Brian Christopher Smith, Atiim Joseph Wiley
  • Patent number: 11213204
    Abstract: Methods and apparatus, including computer program products, are provided for remote monitoring. In some example implementations, there is provided a method. The method may include receiving, at a remote monitor, a notification message representative of an event detected, by a server, from analyte sensor data obtained from a receiver monitoring an analyte state of a host; presenting, at the remote monitor, the notification message to activate the remote monitor, wherein the remote monitor is configured by the server to receive the notification message to augment the receiver monitoring of the analyte state of the host; accessing, by the remote monitor, the server, in response to the presenting of the notification message; and receiving, in response to the accessing, information including at least the analyte sensor data. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: January 4, 2022
    Assignee: DexCom, Inc.
    Inventors: Michael Robert Mensinger, Eric Cohen, Phil Mayou, Eli Reihman, Katherine Yerre Koehler, Rian Draeger, Angela Marie Traven
  • Patent number: 11197626
    Abstract: The present embodiments provide systems and methods for, among others, tracking sensor insertion locations in a continuous analyte monitoring system. Data gathered from sensor sessions can be used in different ways, such as providing a user with a suggested rotation of insertion locations, correlating data from a given sensor session with sensor accuracy and/or sensor session length, and providing a user with a suggested next insertion location based upon past sensor accuracy and/or sensor session length at that location.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: December 14, 2021
    Assignee: DexCom, Inc.
    Inventors: Katherine Yerre Koehler, Leif N. Bowman, Rian Draeger, Laura Dunn, Eli Reihman
  • Publication number: 20210361163
    Abstract: Methods and apparatus, including computer program products, are provided for remote monitoring. In some example implementations, there is provided a method. The method may include receiving, at a remote monitor, a notification message representative of an event detected, by a server, from analyte sensor data obtained from a receiver monitoring an analyte state of a host; presenting, at the remote monitor, the notification message to activate the remote monitor, wherein the remote monitor is configured by the server to receive the notification message to augment the receiver monitoring of the analyte state of the host; accessing, by the remote monitor, the server, in response to the presenting of the notification message; and receiving, in response to the accessing, information including at least the analyte sensor data. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Application
    Filed: August 6, 2021
    Publication date: November 25, 2021
    Inventors: Michael Robert Mensinger, Eric Cohen, Phil Mayou, Eli Reihman, Katherine Yerre Koehler, Rian Draeger, Angela Marie Traven
  • Patent number: 11183298
    Abstract: Disclosed are systems and methods for secure and seamless set up and modification of bolus calculator parameters for a bolus calculator tool by a health care provider (HCP). In one aspect, a method for enabling HCP set up of a bolus calculator includes providing a server accessible by both an HCP and a patient; upon login by the HCP, displaying, or transmitting for display, a fillable form, the fillable form including one or more fields for entry of one or more bolus calculator parameters; receiving data from the fillable form, the data corresponding to one or more bolus calculator parameters; and upon login by the patient, transmitting data to a device associated with the patient, the transmitted data based on the received data, where the transmitted data corresponds to one or more of the bolus calculator parameters in a format suitable for entry to a bolus calculator.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: November 23, 2021
    Assignee: DexCom, Inc.
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Esteban Cabrera, Jr., Alexandra Elena Constantin, Rian Draeger, Peter Galuardi, Hari Hampapuram, Matthew Lawrence Johnson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aarthi Mahalingam, Gary A. Morris, Philip Thomas Pupa, Peter C. Simpson, Brian Christopher Smith, Tomas C. Walker
  • Patent number: 11160452
    Abstract: Methods and apparatus, including computer program products, are provided for remote monitoring. In some example implementations, there is provided a method. The method may include receiving, at a remote monitor, a notification message representative of an event detected, by a server, from analyte sensor data obtained from a receiver monitoring an analyte state of a host; presenting, at the remote monitor, the notification message to activate the remote monitor, wherein the remote monitor is configured by the server to receive the notification message to augment the receiver monitoring of the analyte state of the host; accessing, by the remote monitor, the server, in response to the presenting of the notification message; and receiving, in response to the accessing, information including at least the analyte sensor data. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: November 2, 2021
    Assignee: DexCom, Inc.
    Inventors: Michael Robert Mensinger, Eric Cohen, Phil Mayou, Eli Reihman, Katherine Yerre Koehler, Rian Draeger, Angela Marie Traven
  • Patent number: 11154253
    Abstract: Disclosed are systems and methods for generating graphical displays of analyte data and/or health information. In some implementations, the graphical displays are generating based on a self-referential dataset that are modifiable based on identified portions of the data. The modified graphical displays can indicate features in the analyte data of a host.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: October 26, 2021
    Assignee: DexCom, Inc.
    Inventors: Esteban Cabrera, Jr., Lauren Danielle Armenta, Scott M. Belliveau, Jennifer Blackwell, Leif N. Bowman, Rian Draeger, Arturo Garcia, Timothy Joseph Goldsmith, John Michael Gray, Andrea Jean Jackson, Apurv Ullas Kamath, Katherine Yerre Koehler, Paul Kramer, Aditya Sagar Mandapaka, Michael Robert Mensinger, Sumitaka Mikami, Gary A. Morris, Hemant Mahendra Nirmal, Paul Noble-Campbell, Philip Thomas Pupa, Eli Reihman, Peter C. Simpson, Brian Christopher Smith, Atiim Joseph Wiley
  • Publication number: 20210316070
    Abstract: Methods, devices and systems are disclosed for inter-app communications between software applications on a mobile communications device. In one aspect, a computer-readable medium on a mobile computing device comprising an inter-application communication data structure to facilitate transitioning and distributing data between software applications in a shared app group for an operating system of the mobile computing device includes a scheme field of the data structure providing a scheme id associated with a target software app to transition to from a source software app, wherein the scheme id is listed on a scheme list stored with the source software app; and a payload field of the data structure providing data and/or an identification where to access data in a shared file system accessible to the software applications in the shared app group, wherein the payload field is encrypted.
    Type: Application
    Filed: March 16, 2021
    Publication date: October 14, 2021
    Inventors: Gary A. Morris, Scott M. Belliveau, Esteban Cabrera, JR., Rian Draeger, Laura J. Dunn, Timothy Joseph Goldsmith, Hari Hampapuram, Christopher Robert Hannemann, Apurv Ullas Kamath, Katherine Yerre Koehler, Patrick Wile McBride, Michael Robert Mensinger, Francis William Pascual, Philip Mansiel Pellouchoud, Nicholas Polytaridis, Philip Thomas Pupa, Anna Leigh Davis, Kevin Shoemaker, Brian Christopher Smith, Benjamin Elrod West, Atiim Joseph Wiley
  • Patent number: 11141116
    Abstract: Disclosed are systems and methods for generating graphical displays of analyte data and/or health information. In some implementations, the graphical displays are generating based on a self-referential dataset that are modifiable based on identified portions of the data. The modified graphical displays can indicate features in the analyte data of a host.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: October 12, 2021
    Assignee: DexCom, Inc.
    Inventors: Esteban Cabrera, Jr., Lauren Danielle Armenta, Scott M. Belliveau, Jennifer Blackwell, Leif N. Bowman, Rian Draeger, Arturo Garcia, Timothy Joseph Goldsmith, John Michael Gray, Andrea Jean Jackson, Apurv Ullas Kamath, Katherine Yerre Koehler, Paul Kramer, Aditya Sagar Mandapaka, Michael Robert Mensinger, Sumitaka Mikami, Gary A. Morris, Hemant Mahendra Nirmal, Paul Noble-Campbell, Philip Thomas Pupa, Eli Reihman, Peter C. Simpson, Brian Christopher Smith, Atiim Joseph Wiley
  • Patent number: 11109757
    Abstract: Methods and apparatus, including computer program products, are provided for remote monitoring. In some example implementations, there is provided a method. The method may include receiving, at a remote monitor, a notification message representative of an event detected, by a server, from analyte sensor data obtained from a receiver monitoring an analyte state of a host; presenting, at the remote monitor, the notification message to activate the remote monitor, wherein the remote monitor is configured by the server to receive the notification message to augment the receiver monitoring of the analyte state of the host; accessing, by the remote monitor, the server, in response to the presenting of the notification message; and receiving, in response to the accessing, information including at least the analyte sensor data. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: September 7, 2021
    Assignee: DexCom, Inc.
    Inventors: Michael Robert Mensinger, Eric Cohen, Phil Mayou, Eli Reihman, Katherine Yerre Koehler, Rian Draeger, Angela Marie Traven
  • Publication number: 20210260287
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210260286
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210260289
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210259591
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210260288
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney