Patents by Inventor Richard A. Mathies

Richard A. Mathies has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040209354
    Abstract: Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.
    Type: Application
    Filed: December 29, 2003
    Publication date: October 21, 2004
    Applicant: The Regents of the University of California
    Inventors: Richard A. Mathies, William H. Grover, Brian Paegel, Alison Skelley, Eric Lagally, Chung N. Liu, Robert Blazej
  • Patent number: 6749734
    Abstract: A capillary array electrophoresis (CAE) micro-plate with an array of separation channels connected to an array of sample reservoirs on the plate. The sample reservoirs are organized into one or more sample injectors. One or more waste reservoirs are provided to collect wastes from reservoirs in each of the sample injectors. Additionally, a cathode reservoir is also multiplexed with one or more separation channels. To complete the electrical path, an anode reservoir which is common to some or all separation channels is also provided on the micro-plate. Moreover, the channel layout keeps the distance from the anode to each of the cathodes approximately constant.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: June 15, 2004
    Assignee: The Regents of the University of California
    Inventors: Peter C. Simpson, Richard A. Mathies, Adam T. Woolley
  • Publication number: 20030222223
    Abstract: A miniaturized optical excitation and detector system is described for detecting fluorescently labeled analytes in electrophoretic microchips and microarrays. The system uses miniature integrated components, light collection, optical fluorescence filtering, and an amorphous a-Si:H detector for detection. The collection of light is accomplished with proximity gathering and/or a micro-lens system. Optical filtering is accomplished by integrated optical filters. Detection is accomplished utilizing a-Si:H detectors.
    Type: Application
    Filed: October 10, 2002
    Publication date: December 4, 2003
    Inventors: Toshihiro Kamei, Richard A. Mathies, James R. Scherer, Robert A. Street
  • Patent number: 6623613
    Abstract: A microfabricated liquid sample loading system comprising a first plate having an array of microfabricated holes passing therethrough; a second plate positioned against the first plate, the second plate having an array of microfabricated holes passing therethrough; and a plurality of microfabricated channels disposed on a surface of at least one of the first or second plates, the microfabricated channels connecting the array of microfabricated holes in the first plate with the array of microfabricated holes in the second plate.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: September 23, 2003
    Assignee: The Regents of the University of California
    Inventors: Richard A. Mathies, Charles A. Emrich, Peter C. Simpson
  • Publication number: 20030150727
    Abstract: An improved rotary confocal fluorescence scanner capable of detecting analytes separated on over a 1,000 capillaries simultaneously. This system uses a confocal microscope objective and mirror assembly that rotates inside a vertical ring of capillaries to provide rapid and efficient excitation and detection of fluorescently labeled fragments separated within a cylindrical capillary array. Use of automated procedures to load and run all capillaries permits one to read more than 350,000 base pairs of raw sequence data per hour.
    Type: Application
    Filed: October 31, 2002
    Publication date: August 14, 2003
    Applicant: Affymetrix, Inc.
    Inventors: Richard A. Mathies, James R. Scherer
  • Publication number: 20030143594
    Abstract: Fluorescent labels having at least one donor and at least one acceptor fluorophore bonded to a polymeric backbone in energy transfer relationship, as well as methods for their use, are provided. Of particular interest are the subject labels wherein the polymeric backbone is a nucleic acid and the donor fluorophore is bonded to the 5′ terminus of said nucleic acid. Such labels find use as primers in applications involving nucleic acid chain extension, such as sequencing, PCR and the like.
    Type: Application
    Filed: November 4, 2002
    Publication date: July 31, 2003
    Applicant: The Regents of the University of California
    Inventors: Richard Mathies, Alexander Glazer, Jingyue Ju
  • Patent number: 6573047
    Abstract: The present invention provides methods and kits for identifying nucleotides at a variant site in a target molecule by forming fluorescence resonance energy transfer labeled product. The location and type of fluorescent labels in the labeled product provide strong signals and relatively high spectral purity that facilitate detection. Utilizing various secondary labels and different combinations of acceptor and donor labels, certain methods permit multiple analyses to be conducted simultaneously and at high throughput. The methods can be used in a variety of applications such as analyzing point mutations and single nucleotide polymorphisms (SNPs). In addition, the methods have utility in other applications in which specific sequence information is of value, including detection of pathogens, paternity disputes, prenatal testing and forensic analysis.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: June 3, 2003
    Assignee: DNA Sciences, Inc.
    Inventors: Su-Chun Hung, Alexander N. Glazer, Richard A. Mathies
  • Patent number: 6554986
    Abstract: An improved rotary confocal fluorescence scanner capable of detecting analytes separated on over a 1,000 capillaries simultaneously. This system uses a confocal microscope objective and mirror assembly that rotates inside a vertical ring of capillaries to provide rapid and efficient excitation and detection of fluorescently labeled fragments separated within a cylindrical capillary array. Use of automated procedures to load and run all capillaries permits one to read more than 350,000 base pairs of raw sequence data per hour.
    Type: Grant
    Filed: May 25, 2000
    Date of Patent: April 29, 2003
    Assignee: Affymetrix, Inc.
    Inventors: Richard A. Mathies, James R. Scherer
  • Patent number: 6544744
    Abstract: Fluorescent labels having at least one donor and at least one acceptor fluorophore bonded to a polymeric backbone in energy transfer relationship, as well as methods for their use, are provided. Of particular interest are the subject labels wherein the polymeric backbone is a nucleic acid and the donor fluorophore is bonded to the 5′ terminus of said nucleic acid. Such labels find use as primers in applications involving nucleic acid chain extension, such as sequencing, PCR and the like.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: April 8, 2003
    Assignee: The Regents of the University of California
    Inventors: Richard Mathies, Alexander Glazer, Jingyue Ju
  • Patent number: 6428667
    Abstract: Novel fluorescent labeling techniques and fluorescent labels are provided, employing high affinity non-covalently binding and intercalating fluorescent dyes and dsDNA. The dyes find application to provide highly sensitive labeling of nucleic acids in electrophoretic gels and as pre-prepared labels for binding to a wide variety of specific binding pair members. The DNA-dye fluorescer complex can be used for labels in diagnostic assays, detection of specific nucleic acid sequences, and the like.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: August 6, 2002
    Assignee: The Regents of the University of California, Berkeley
    Inventors: Alexander N. Glazer, Richard A. Mathies, Konan Peck
  • Publication number: 20020068357
    Abstract: A miniature device has a body including one, two or more reaction chambers. The reaction chambers are constructed for one or more of the following: sample acquisition, preparation or analysis. Preferably, a sample preparation reaction includes nucleic acid extraction, amplification, nucleic acid fragmentation, labeling, extension or a transcription.
    Type: Application
    Filed: August 9, 2001
    Publication date: June 6, 2002
    Inventors: Richard A. Mathies, Eric T. Lagally, Peter C. Simpson
  • Publication number: 20020060156
    Abstract: A fully integrated monolithic small volume PCR-CE device in glass, or the like materials, is fabricated using thin film metal heaters and thermocouples to thermally cycle sub-microliter PCR volumes. Successful amplification of a PCR fragment is demonstrated on a PCR-CE chip. The process utilizes a linear polyacrylamide surface coating coupled with addition of BSA to the amplification buffer was necessary to obtain amplification efficiencies comparable to a positive control. The micro-reactor reduced significantly the time required for amplification and the reaction volume was in the sub-microliter regime. Likewise addressed are the known problems connected with reliable microfabrication of metal coatings and the insulating layers required to shield these layers from the PCR reaction mix, and the longstanding unresolved issue of exposed metal regions in the PCR-CE chip resulting in electrolysis of water and bubble formation whenever a voltage is applied.
    Type: Application
    Filed: July 16, 2001
    Publication date: May 23, 2002
    Applicant: Affymetrix, Inc.
    Inventors: Richard A. Mathies, Peter C. Simpson, Stephen J. Williams
  • Patent number: 6361671
    Abstract: This invention relates to a microfabricated capillary electrophoresis chip for detecting multiple redox-active labels simultaneously using a matrix coding scheme and to a method of selectively labeling analytes for simultaneous electrochemical detection of multiple label-analyte conjugates after electrophoretic or chromatographic separation.
    Type: Grant
    Filed: January 11, 1999
    Date of Patent: March 26, 2002
    Assignee: The Regents of the University of California
    Inventors: Richard A. Mathies, Pankaj Singhal, Jin Xie, Alexander N. Glazer
  • Publication number: 20020006359
    Abstract: Apparatus for forward and reverse transfer of fluids through capillaries, consisting of at least one capillary, a pressure generating or housing means, which preferably includes a box, having first and second means for aligning the capillaries from one set of wells to a second set of wells, and applied pressure differential transfers small amounts of liquid uniformly and in parallel. A method of accurately controlling a desired volume of fluid flow is particularly useful for transferring liquids to and from a microtiter dish to a Capillary Array Electrophoresis Microplate having liquid wells spaced in a radially symmetric configuration, or for maximizing desired transfer of the like or improved novel enhanced patterned arrays.
    Type: Application
    Filed: November 25, 1998
    Publication date: January 17, 2002
    Applicant: AFFYMETRIX, INC.
    Inventors: RICHARD A. MATHIES, PETER C. SIMPSON
  • Patent number: 6284525
    Abstract: The present invention generally relates to miniaturized devices for carrying out and controlling chemical reactions and analyses. In particular, the present invention provides devices which have miniature temperature controlled reaction chambers for carrying out a variety of synthetic and diagnostic applications, such as PCR amplification, nucleic acid hybridization, chemical labeling, nucleic acid fragmentation and the like.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: September 4, 2001
    Assignee: Affymetrix, Inc.
    Inventors: Richard A. Mathies, Adam T. Woolley
  • Patent number: 6280933
    Abstract: Novel fluorescent labeling techniques and fluorescent labels are provided, employing high affinity non-covalently binding and intercalating fluorescent dyes and dsDNA. The dyes find application to provide highly sensitive labeling of nucleic acids in electrophoretic gels and as pre-prepared labels for binding to a wide variety of specific binding pair members. The DNA-dye fluorescer complex can be used for labels in diagnostic assays, detection of specific nucleic acid sequences, and the like.
    Type: Grant
    Filed: November 7, 1997
    Date of Patent: August 28, 2001
    Assignee: The Regents of the University of California
    Inventors: Alexander N. Glazer, Richard A. Mathies, Konan Peck
  • Patent number: 6270644
    Abstract: A Monster Capillary Array Electrophoresis scanner measures four-color electropherograms from over a thousand capillary electrophoretic separations in parallel. The system consists of a two-dimensional confocal rotary scanner and a four-color detection unit.
    Type: Grant
    Filed: January 27, 1999
    Date of Patent: August 7, 2001
    Assignee: Affymetrix, Inc.
    Inventors: Richard A. Mathies, James R. Scherer
  • Patent number: 6261431
    Abstract: A fully integrated monolithic small volume PCR-CE device in glass, or the like materials, is fabricated using thin film metal heaters and thermocouples to thermally cycle sub-microliter PCR volumes. Successful amplification of a PCR fragment is demonstrated on a PCR-CE chip. The process utilizes a linear polyacrylamide surface coating coupled with addition of BSA to the amplification buffer was necessary to obtain amplification efficiencies comparable to a positive control. The micro-reactor reduced significantly the time required for amplification and the reaction volume was in the sub-microlitre regime. Likewise addressed are the known problems connected with reliable microfabrication of metal coatings and the insulating layers required to shield these layers from the PCR reaction mix, and the longstanding unresolved issue of exposed metal regions in the PCR-CE chip resulting in electrolysis of water and bubble formation whenever a voltage is applied.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: July 17, 2001
    Assignee: Affymetrix, Inc.
    Inventors: Richard A. Mathies, Peter C. Simpson, Stephen J. Williams
  • Patent number: 6177247
    Abstract: Compositions are provided comprising sets of fluorescent labeled oligonucleotides carrying pairs of donor and acceptor dye molecules, designed for efficient excitation of the donors at a single wavelength and emission from the acceptor in each of the pairs at different wavelengths. The different molecules having different donor-acceptor pairs can be modified to have substantially the same mobility and enhanced emission intensities under separation conditions, by varying the distance between the donor and acceptor in a given pair. Particularly, the fluorescent compositions find use as labels in analyzing double stranded and single stranded nucleic acid fragments using capillary electrophoresis.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: January 23, 2001
    Assignee: The Regents of the University of California
    Inventors: Richard Mathies, Alexander Glazer, Jingyue Ju
  • Patent number: 6150107
    Abstract: Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures.
    Type: Grant
    Filed: October 1, 1998
    Date of Patent: November 21, 2000
    Assignee: The Regents of the University of California
    Inventors: Alexander N. Glazer, Richard A. Mathies, Su-Chun Hung, Jingyue Ju