Patents by Inventor Richard J. Hill

Richard J. Hill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11289501
    Abstract: Some embodiments include a memory array which has a vertical stack of alternating insulative levels and wordline levels. A channel material extends vertically along the stack. The channel material includes a semiconductor composition and has first segments alternating with second segments. The first segments are adjacent the wordline levels and the second segments are adjacent the insulative levels. The first segments have a first dopant distribution and the second segments have a second dopant distribution which is different from the first dopant distribution. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: March 29, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Shyam Surthi, Byeung Chul Kim, Richard J. Hill, Francois H. Fabreguette, Gurtej S. Sandhu
  • Publication number: 20220077176
    Abstract: An electronic device comprising a cell region comprising stacks of alternating dielectric materials and conductive materials. A pillar region is adjacent to the cell region and comprises storage node segments adjacent to adjoining oxide materials and adjacent to a tunnel region. The storage node segments are separated by a vertical portion of the tunnel region. A high-k dielectric material is adjacent to the conductive materials of the cell region and to the adjoining oxide materials of the pillar region. Additional electronic devices are disclosed, as are methods of forming an electronic device and related systems.
    Type: Application
    Filed: September 4, 2020
    Publication date: March 10, 2022
    Inventors: Shyam Surthi, Richard J. Hill, Gurtej S. Sandhu, Byeung Chul Kim, Francois H. Fabreguette, Chris M. Carlson, Michael E. Koltonski, Shane J. Trapp
  • Publication number: 20220068955
    Abstract: Microelectronic devices include a stack structure comprising a vertically alternating sequence of insulative structures and conductive structures arranged in tiers. A series of pillars extends through the stack structure. At least one isolation structure extends through an upper stack portion of the stack structure. The at least one isolation structure protrudes into pillars of neighboring columns of pillars of the series of pillars. Conductive contacts are in electrical communication with the pillars into which the at least one isolation structure protrudes. Related methods and electronic systems are also disclosed.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 3, 2022
    Inventors: Matthew J. King, David A. Daycock, Yoshiaki Fukuzumi, Albert Fayrushin, Richard J. Hill, Chandra S. Tiwari, Jun Fujiki
  • Publication number: 20220068932
    Abstract: Some embodiments include an integrated assembly having first conductive structures extending along a first direction. Spaced-apart upwardly-opening container-shapes are over the first conductive structures. Each of the container-shapes has a first sidewall region, a second sidewall region, and a bottom region extending from the first sidewall region to the second sidewall region. Each of the first and second sidewall regions includes a lower source/drain region, an upper source/drain region, and a channel region between the upper and lower source/drain regions. The lower source/drain regions are electrically coupled with the first conductive structures. Second conductive structures extend along a second direction which crosses the first direction. The second conductive structures have gate regions operatively adjacent the channel regions. Storage elements are electrically coupled with the upper source/drain regions. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: July 14, 2021
    Publication date: March 3, 2022
    Applicant: Micron Technology, Inc.
    Inventors: David K. Hwang, Richard J. Hill, Gurtej S. Sandhu
  • Publication number: 20220069133
    Abstract: Some embodiments include an integrated assembly having an upwardly-extending structure with a sidewall surface. Two-dimensional-material extends along the sidewall surface. First electrostatic-doping-material is adjacent a lower region of the two-dimensional-material, insulative material is adjacent a central region of the two-dimensional-material, and second electrostatic-doping-material is adjacent an upper region of the two-dimensional-material. A conductive-gate-structure is over the first electrostatic-doping-material and adjacent to the insulative material. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: August 27, 2020
    Publication date: March 3, 2022
    Applicant: Micron Technology, Inc.
    Inventors: David K. Hwang, Richard J. Hill, Gurtej S. Sandhu
  • Publication number: 20220068317
    Abstract: Some embodiments include an integrated assembly having a pair of adjacent memory-block-regions, and having a separator structure between the adjacent memory-block-regions. The memory-block-regions include a first stack of alternating conductive levels and first insulative levels. The separator structure includes a second stack of alternating second and third insulative levels. The second insulative levels are substantially horizontally aligned with the conductive levels, and the third insulative levels are substantially horizontally aligned with the first insulative levels. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: April 29, 2021
    Publication date: March 3, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Yoshiaki Fukuzumi, Paolo Tessariol, David H. Wells, Lars P. Heineck, Richard J. Hill, Lifang Xu, Indra V. Chary, Emilio Camerlenghi
  • Publication number: 20220051930
    Abstract: A method of forming an apparatus includes forming pillar structures extending vertically through a first isolation material, forming conductive lines operatively coupled to the pillar structures, forming dielectric structures overlying the conductive lines, and forming air gaps between neighboring conductive lines. The air gaps are laterally adjacent to the conductive lines with a portion of the air gaps extending above a plane of an upper surface of the laterally adjacent conductive lines and a portion of the air gaps extending below a plane of a lower surface of the laterally adjacent conductive lines. Apparatuses, memory devices, methods of forming a memory device, and electronic systems are also disclosed.
    Type: Application
    Filed: August 11, 2020
    Publication date: February 17, 2022
    Inventors: Sidhartha Gupta, David Ross Economy, Richard J. Hill, Kyle A. Ritter, Naveen Kaushik
  • Publication number: 20220045072
    Abstract: Some embodiments include an integrated assembly having a vertical stack of alternating insulative levels and conductive levels. The conductive levels include conductive structures. Channel material extends vertically through the stack. The conductive structures have proximal regions near the channel material, and have distal regions further from the channel material than the proximal regions. The insulative levels have first regions vertically between the proximal regions of neighboring conductive structures, and have second regions vertically between the distal regions of the neighboring conductive structures. Voids are within the insulative levels and extend across portions of the first and second regions. Some embodiments include methods for forming integrated assemblies.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Shyam Surthi, Richard J. Hill
  • Patent number: 11244954
    Abstract: Some embodiments include a NAND memory array having a vertical stack of alternating insulative levels and conductive levels. The conductive levels include control gate regions. High-k dielectric material is adjacent to the control gate regions and is configured as an arrangement of first vertically-extending linear segments which are vertically spaced from one another. Charge-blocking material is adjacent to the high-k dielectric material and is configured as an arrangement of second vertically-extending linear segments which are vertically spaced from one another. Charge-storage material is adjacent to the charge-blocking material and is configured as an arrangement of third vertically-extending linear segments which are vertically spaced from one another. Gate-dielectric material is adjacent to the charge-storage material. Channel material extends vertically along the stack and is adjacent to the gate-dielectric material.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: February 8, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Shyam Surthi, Davide Resnati, Paolo Tessariol, Richard J. Hill, John D. Hopkins
  • Patent number: 11227861
    Abstract: Some embodiments include an integrated assembly having a base comprising sense-amplifier-circuitry, a first deck over the base, and a second deck over the first deck. The first deck includes a first portion of a first array of first memory cells, and includes a first portion of a second array of second memory cells. The second deck includes a second portion of the first array of the first memory cells, and includes a second portion of the second array of the second memory cells. A first digit line is associated with the first array, and a second digit line is associated with the second array. The first and second digit lines are comparatively coupled with one another through the sense-amplifier-circuitry.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: January 18, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Hiroki Fujisawa, Charles L. Ingalls, Richard J. Hill, Gurtej S. Sandhu, Scott J. Derner
  • Publication number: 20220013450
    Abstract: Some embodiments include an assembly having channel-material-structures, and having memory cells along the channel-material-structures. The memory cells include charge-storage-material. Linear-conductive-structures are vertically offset from the channel-material-structures and are electrically coupled with the channel-material-structures. Intervening regions are between the linear-conductive-structures. Conductive-shield-structures are within the intervening regions. The conductive-shield-structures are electrically coupled with a reference-voltage-source.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 13, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Naveen Kaushik, Yoshihiko Kamata, Richard J. Hill, Kyle A. Ritter, Tomoko Ogura Iwasaki, Haitao Liu
  • Patent number: 11189629
    Abstract: Some embodiments include an integrated assembly having a vertical stack of alternating insulative levels and conductive levels. The conductive levels include conductive structures. Channel material extends vertically through the stack. The conductive structures have proximal regions near the channel material, and have distal regions further from the channel material than the proximal regions. The insulative levels have first regions vertically between the proximal regions of neighboring conductive structures, and have second regions vertically between the distal regions of the neighboring conductive structures. Voids are within the insulative levels and extend across portions of the first and second regions. Some embodiments include methods for forming integrated assemblies.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: November 30, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Shyam Surthi, Richard J. Hill
  • Publication number: 20210366525
    Abstract: A method used in forming a memory array comprises forming digitlines above and electrically couple to memory cells there-below. The digitlines are laterally-spaced relative one another in a vertical cross-section. An upwardly-open void-space is laterally-between immediately-adjacent of the digitlines in the vertical cross-section. Conductive material of the digitlines is covered with masking material that is in and less-than-fills the upwardly-open void-spaces. The masking material is removed from being directly above tops of the digitlines to expose the conductive digitline material and to leave the masking material over sidewalls of the conductive digitline material in the upwardly-open void-spaces. Insulative material is selectively grown from the exposed conductive digitline material relative to the masking material across the upwardly-open void-spaces to form covered void-spaces there-from between the immediately-adjacent digitlines in the vertical cross-section.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 25, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Armin Saeedi Vahdat, Richard J. Hill, Aaron Michael Lowe
  • Publication number: 20210366927
    Abstract: Some embodiments include a NAND memory array having a vertical stack of alternating insulative levels and conductive levels. The conductive levels include control gate regions and include second regions proximate to the control gate regions. High-k dielectric structures are directly against the control gate regions and extend entirely across the insulative levels. Charge-blocking material is adjacent to the high-k dielectric structures. Charge-storage material is adjacent to the charge-blocking material. The charge-storage material is configured as segments which are vertically stacked one atop another, and which are vertically spaced from one another. Gate-dielectric material is adjacent to the charge-storage material. Channel material extends vertically along the stack and is adjacent to the gate-dielectric material. Some embodiments include integrated assemblies, and methods of forming integrated assemblies.
    Type: Application
    Filed: August 4, 2021
    Publication date: November 25, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Byeung Chul Kim, Francois H. Fabreguette, Richard J. Hill, Shyam Surthi
  • Publication number: 20210343729
    Abstract: Some embodiments include an integrated assembly having a vertical stack of alternating insulative levels and conductive levels. The conductive levels include conductive structures. Channel material extends vertically through the stack. The conductive structures have proximal regions near the channel material, and have distal regions further from the channel material than the proximal regions. The insulative levels have first regions vertically between the proximal regions of neighboring conductive structures, and have second regions vertically between the distal regions of the neighboring conductive structures. Voids are within the insulative levels and extend across portions of the first and second regions. Some embodiments include methods for forming integrated assemblies.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 4, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Shyam Surthi, Richard J, Hill
  • Publication number: 20210343736
    Abstract: An electronic structure comprising stacks comprising alternating dielectric materials and conductive materials in a cell region of the electronic structure. A pillar high-k dielectric material is adjacent to the stacks and in a pillar region of the electronic structure. A charge blocking material, a nitride material, a tunnel dielectric material, and a channel material are adjacent to the pillar high-k dielectric material in the pillar region of the electronic structure. A cell high-k dielectric material surrounds the conductive materials in the cell region of the electronic structure. The cell high-k dielectric material adjoins a portion of the pillar high-k dielectric material. Additional electronic structures are disclosed, as are related electronic devices, systems, and methods of forming an electronic device.
    Type: Application
    Filed: April 29, 2020
    Publication date: November 4, 2021
    Inventors: Shyam Surthi, Chris M. Carlson, Richard J. Hill, Davide Resnati
  • Publication number: 20210335817
    Abstract: Some embodiments include a NAND memory array having a vertical stack of alternating insulative levels and conductive levels. The conductive levels include control gate regions and second regions proximate to the control gate regions. High-k dielectric material wraps around ends of the control gate regions, and is not along the second regions. Charge-blocking material is adjacent to the high-k dielectric material. Charge-storage material is adjacent to the charge-blocking material. The charge-storage material is configured as segments which are vertically stacked one atop another, and which are vertically spaced from one another by gaps. Gate-dielectric material is adjacent to the charge-storage material. Channel material extends vertically along the stack and is adjacent to the gate-dielectric material. Some embodiments include integrated assemblies, and methods of forming integrated assemblies.
    Type: Application
    Filed: July 7, 2021
    Publication date: October 28, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Shyam Surthi, Richard J. Hill, Byeung Chul Kim, Akira Goda
  • Publication number: 20210335818
    Abstract: Some embodiments include a NAND memory array having a vertical stack of alternating insulative levels and conductive levels. The conductive levels include control gate regions and distal regions proximate the control gate regions. The control gate regions have front surfaces, top surfaces and bottom surfaces. The top and bottoms surfaces extend back from the front surfaces. High-k dielectric material is along the control gate regions. The high-k dielectric material has first regions along the top and bottom surfaces, and has second regions along the front surfaces. The first regions are thicker than the second regions. Charge-blocking material is adjacent to the second regions of the high-k dielectric material. Charge-storage material is adjacent to the charge-blocking material. Gate-dielectric material is adjacent to the charge-storage material. Channel material is adjacent to the gate-dielectric material. Some embodiments include integrated assemblies.
    Type: Application
    Filed: July 7, 2021
    Publication date: October 28, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Shyam Surthi, Richard J. Hill
  • Publication number: 20210327898
    Abstract: Some embodiments include a memory array having a vertical stack of alternating insulative levels and wordline levels. The wordline levels have conductive terminal ends within control gate regions. The control gate regions are vertically spaced from one another by first insulative regions which include first insulative material. Charge-storage material is laterally outward of the conductive terminal ends, and is configured as segments. The segments of the charge-storage material are arranged one atop another and are vertically spaced from one another by second insulative regions which include second insulative material. The second insulative material has a different dielectric constant than the first insulative material. Charge-tunneling material extends vertically along the stack, and is adjacent to the segments of the charge-trapping material. Channel material extends vertically along the stack, and is adjacent to the charge-tunneling material.
    Type: Application
    Filed: May 24, 2021
    Publication date: October 21, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Byeung Chul Kim, Francois H. Fabreguette, Richard J. Hill, Purnima Narayanan, Shyam Surthi
  • Publication number: 20210327883
    Abstract: Some embodiments include an integrated assembly having digit lines which extend along a first direction, and which are spaced from one another by intervening regions. Each of the intervening regions has a first width along a cross-section. Pillars extend upwardly from the digit lines; and the pillars include transistor channel regions extending vertically between upper and lower source/drain regions. Storage elements are coupled with the upper source/drain regions. Wordlines extend along a second direction which crosses the first direction. The wordlines include gate regions adjacent the channel regions. Shield lines are within the intervening regions and extend along the first direction. The shield lines may be coupled with at least one reference voltage node. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Srinivas Pulugurtha, Richard J. Hill, Yunfei Gao, Nicholas R. Tapias, Litao Yang, Haitao Liu