Patents by Inventor Richard Lee Halpert

Richard Lee Halpert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11879829
    Abstract: Methods for classifying fluorescent flow cytometer data are provided. In some instances, methods include processing the flow cytometer data with a supervised algorithm configured to cluster the fluorescent flow cytometer data into distinct populations according to the relationship of data points to relevant threshold values. In embodiments, methods include determining a measure of spillover spreading by calculating spillover spreading coefficients and combining them in a spillover spreading matrix. In some embodiments, populations of fluorescent flow cytometer data are adjusted to subtract the magnitude of spillover spreading. In embodiments, spillover spreading adjusted populations are partitioned after potential partitions are evaluated relative to the threshold values. In embodiments, partitioned populations of fluorescent flow cytometer data are classified (i.e., phenotyped) according to a hierarchy. Systems and computer-readable media for classifying fluorescent flow cytometer data are also provided.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: January 23, 2024
    Assignee: BECTON, DICKINSON AND COMPANY
    Inventor: Richard Lee Halpert
  • Publication number: 20230333000
    Abstract: Methods for characterizing spillover spreading originating from a first fluorochrome in fluorescent flow cytometer data collected for a second fluorochrome are provided. In some embodiments, methods include partitioning the fluorescent flow cytometer data according to the intensity of the data relative to the first fluorochrome. In embodiments, methods also include estimating with a first linear regression a zero-adjusted standard deviation for the intensity of light collected from the second fluorochrome for each of the partitioned quantiles based on the assumption that the intensity of light collected from the first fluorochrome is zero, and obtaining with a second linear regression a spillover spreading coefficient from the zero-adjusted standard deviations. Systems and computer-readable media for characterizing spillover spreading originating from a first fluorochrome in fluorescent flow cytometer data collected for a second fluorochrome are also provided.
    Type: Application
    Filed: April 26, 2023
    Publication date: October 19, 2023
    Inventor: Richard Lee Halpert
  • Patent number: 11674879
    Abstract: Methods for characterizing spillover spreading originating from a first fluorochrome in fluorescent flow cytometer data collected for a second fluorochrome are provided. In some embodiments, methods include partitioning the fluorescent flow cytometer data according to the intensity of the data relative to the first fluorochrome. In embodiments, methods also include estimating with a first linear regression a zero-adjusted standard deviation for the intensity of light collected from the second fluorochrome for each of the partitioned quantiles based on the assumption that the intensity of light collected from the first fluorochrome is zero, and obtaining with a second linear regression a spillover spreading coefficient from the zero-adjusted standard deviations. Systems and computer-readable media for characterizing spillover spreading originating from a first fluorochrome in fluorescent flow cytometer data collected for a second fluorochrome are also provided.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: June 13, 2023
    Assignee: BECTON, DICKINSON AND COMPANY
    Inventor: Richard Lee Halpert
  • Publication number: 20230045219
    Abstract: Methods for classifying fluorescent flow cytometer data are provided. In some instances, methods include processing the flow cytometer data with a supervised algorithm configured to cluster the fluorescent flow cytometer data into distinct populations according to the relationship of data points to relevant threshold values. In embodiments, methods include determining a measure of spillover spreading by calculating spillover spreading coefficients and combining them in a spillover spreading matrix. In some embodiments, populations of fluorescent flow cytometer data are adjusted to subtract the magnitude of spillover spreading. In embodiments, spillover spreading adjusted populations are partitioned after potential partitions are evaluated relative to the threshold values. In embodiments, partitioned populations of fluorescent flow cytometer data are classified (i.e., phenotyped) according to a hierarchy. Systems and computer-readable media for classifying fluorescent flow cytometer data are also provided.
    Type: Application
    Filed: October 18, 2022
    Publication date: February 9, 2023
    Inventor: Richard Lee Halpert
  • Patent number: 11506593
    Abstract: Methods for classifying fluorescent flow cytometer data are provided. In some instances, methods include processing the flow cytometer data with a supervised algorithm configured to cluster the fluorescent flow cytometer data into distinct populations according to the relationship of data points to relevant threshold values. In embodiments, methods include determining a measure of spillover spreading by calculating spillover spreading coefficients and combining them in a spillover spreading matrix. In some embodiments, populations of fluorescent flow cytometer data are adjusted to subtract the magnitude of spillover spreading. In embodiments, spillover spreading adjusted populations are partitioned after potential partitions are evaluated relative to the threshold values. In embodiments, partitioned populations of fluorescent flow cytometer data are classified (i.e., phenotyped) according to a hierarchy. Systems and computer-readable media for classifying fluorescent flow cytometer data are also provided.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: November 22, 2022
    Assignee: Becton, Dickinson and Company
    Inventor: Richard Lee Halpert
  • Publication number: 20210349004
    Abstract: Methods for characterizing spillover spreading originating from a first fluorochrome in fluorescent flow cytometer data collected for a second fluorochrome are provided. In some embodiments, methods include partitioning the fluorescent flow cytometer data according to the intensity of the data relative to the first fluorochrome. In embodiments, methods also include estimating with a first linear regression a zero-adjusted standard deviation for the intensity of light collected from the second fluorochrome for each of the partitioned quantiles based on the assumption that the intensity of light collected from the first fluorochrome is zero, and obtaining with a second linear regression a spillover spreading coefficient from the zero-adjusted standard deviations. Systems and computer-readable media for characterizing spillover spreading originating from a first fluorochrome in fluorescent flow cytometer data collected for a second fluorochrome are also provided.
    Type: Application
    Filed: April 22, 2021
    Publication date: November 11, 2021
    Inventor: Richard Lee Halpert
  • Publication number: 20210239592
    Abstract: Methods for classifying fluorescent flow cytometer data are provided. In some instances, methods include processing the flow cytometer data with a supervised algorithm configured to cluster the fluorescent flow cytometer data into distinct populations according to the relationship of data points to relevant threshold values. In embodiments, methods include determining a measure of spillover spreading by calculating spillover spreading coefficients and combining them in a spillover spreading matrix. In some embodiments, populations of fluorescent flow cytometer data are adjusted to subtract the magnitude of spillover spreading. In embodiments, spillover spreading adjusted populations are partitioned after potential partitions are evaluated relative to the threshold values. In embodiments, partitioned populations of fluorescent flow cytometer data are classified (i.e., phenotyped) according to a hierarchy. Systems and computer-readable media for classifying fluorescent flow cytometer data are also provided.
    Type: Application
    Filed: January 20, 2021
    Publication date: August 5, 2021
    Inventor: Richard Lee Halpert