Patents by Inventor Richard M. Osgood, III

Richard M. Osgood, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11566115
    Abstract: Biologically-inspired compositions, including color changing compositions, and corresponding embodiments such as sensors, textile materials, coatings and films, are provided which typically include a solid, transparent and nondegradable matrix. The matrix contains a plurality of (i) synthetic particles having a size in the micrometer or nanometer range, each synthetic particle including one or more aggregates of a pigment selected from phenoxazone, phenoxazine, and a derivate or precursor thereof, and a stabilizing material which has a refractive index larger than 1.45, the aggregates having a size larger than about 100 nm; or (ii) submicrometer natural particles extracted and purified from homogenized tissue.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: January 31, 2023
    Assignees: Northeastern University, US Government as Represented by the Secretary of the Army
    Inventors: Leila Deravi, Camille A. Martin, Amrita Kumar, Richard M. Osgood, III
  • Publication number: 20210394440
    Abstract: A scalable method of fabricating large area nanoparticle arrays is disclosed. The method uses a combination of nanofabrication and additive manufacturing techniques to fabricate ordered nanoparticle arrays on wide number of substrates, including flexible substrates. Nanosphere lithography may be used to form a monolayer of polymer nanospheres. A metal may be deposited on the nanospheres, using a physical vapor deposition technique. The nanoparticles may then be decomposed using intense pulsed light technique. Ordered nanoparticle arrays have several promising applications, for example, thin films with tailored light scattering signatures, sensors based on surface-enhanced Raman scattering, nanostructured electrode arrays, and ordered catalytic islands for nanostructure growth.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 23, 2021
    Inventors: Alkim Akyurtlu, Richard M. Osgood, III, Guinevere M. Strack, Yassine AitElAoud
  • Publication number: 20190100634
    Abstract: Biologically-inspired compositions, including color changing compositions, and corresponding embodiments such as sensors, textile materials, coatings and films, are provided which typically include a solid, transparent and nondegradable matrix. The matrix contains a plurality of (i) synthetic particles having a size in the micrometer or nanometer range, each synthetic particle including one or more aggregates of a pigment selected from phenoxazone, phenoxazine, and a derivate or precursor thereof, and a stabilizing material which has a refractive index larger than 1.45, the aggregates having a size larger than about 100 nm; or (ii) submicrometer natural particles extracted and purified from homogenized tissue.
    Type: Application
    Filed: September 25, 2018
    Publication date: April 4, 2019
    Inventors: Leila Deravi, Camille A. Martin, Amrita Kumar, Richard M. Osgood, III
  • Patent number: 8057980
    Abstract: Translucent, transparent, or semi-translucent microlens sheetings with composite images are disclosed, in which a composite image floats above or below the sheeting, or both. The composite image may be two-dimensional or three-dimensional. The sheeting may have at least one layer of material having a surface of microlenses that form one or more images at positions internal to the layer of material, at least one of the images being a partially complete image. Additional layers, such as retroreflective, translucent, transparent, or optical structure layers may also be incorporated into the sheeting.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: November 15, 2011
    Inventors: Douglas S. Dunn, Robert L. W. Smithson, Robert T. Krasa, Michael W. Dolezal, Jeffrey M. Florczak, Stephen P. Maki, Richard M. Osgood, III
  • Patent number: 7920261
    Abstract: A particle detection system that images and detects particles in a fluid flow stream through use of detector array(s) is described. The detection system may include light source arrays that may selectively illuminate a particle in a fluid stream. The detection system may also include a detector array employing smart binning to read the measured signals. The smart binning of the detector array may be achieved through knowledge of an exact particle location provided by a position sensitive detector. The detector array(s) may be low cost based on intelligence built into the system. This particle detection system may be particularly useful for detection and discrimination of different particle types since the read-out of the particle signals can be accomplished with low noise and can be flexible enough to optimize the read out measurements for each particle. The particle detection system may be used, for example, in early warning contamination detection systems and manufacturing processes.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: April 5, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Thomas H. Jeys, Antonio Sanchez-Rubio, Richard J. Molnar, Robert K. Reich, Jinendra K. Ranka, David L. Spears, Richard M. Osgood, III
  • Publication number: 20100053614
    Abstract: A particle detection system that images and detects particles in a fluid flow stream through use of detector array(s) is described. The detection system may include light source arrays that may selectively illuminate a particle in a fluid stream. The detection system may also include a detector array employing smart binning to read the measured signals. The smart binning of the detector array may be achieved through knowledge of an exact particle location provided by a position sensitive detector. The detector array(s) may be low cost based on intelligence built into the system. This particle detection system may be particularly useful for detection and discrimination of different particle types since the read-out of the particle signals can be accomplished with low noise and can be flexible enough to optimize the read out measurements for each particle. The particle detection system may be used, for example, in early warning contamination detection systems and manufacturing processes.
    Type: Application
    Filed: February 11, 2008
    Publication date: March 4, 2010
    Inventors: Thomas H. Jeys, Antonio Sanchez-Rubio, Richard J. Molnar, Robert K. Reich, Jinendra K. Ranka, David L. Spears, Richard M. Osgood, III
  • Patent number: 7068434
    Abstract: Microlens sheetings with composite images are disclosed, in which the composite image floats above or below the sheeting, or both. The composite image may be two-dimensional or three-dimensional. Methods for providing such an imaged sheeting, including by the application of radiation to a radiation sensitive material layer adjacent the microlenses, are also disclosed.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: June 27, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Jeffrey M. Florczak, Robert T. Krasa, Stephen P. Maki, Richard M. Osgood, III
  • Patent number: 6288842
    Abstract: Microlens sheetings with composite images are disclosed, in which the composite image floats above or below the sheeting, or both. The composite image may be two-dimensional or three-dimensional. Methods for providing such an imaged sheeting, including by the application of radiation to a radiation sensitive material layer adjacent the microlenses, are also disclosed.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: September 11, 2001
    Assignee: 3M Innovative Properties
    Inventors: Jeffrey M. Florczak, Robert T. Krasa, Stephen P. Maki, Richard M. Osgood, III