Patents by Inventor Richard M. White

Richard M. White has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9062377
    Abstract: Methods of reducing glitch rates within an ion implanter are described. In one embodiment, a plasma-assisted conditioning is performed, wherein the bias voltage to the extraction electrodes is modified so as to inhibit the formation of an ion beam. The power supplied to the plasma generator in the ion source is increased, thereby creating a high density plasma, which is not extracted by the extraction electrodes. This plasma extends from the ion source chamber through the extraction aperture. Energetic ions then condition the extraction electrodes. In another embodiment, a plasma-assisted cleaning is performed. In this mode, the extraction electrodes are moved further from the ion source chamber, and a different source gas is used to create the plasma. In some embodiments, a combination of these modes is used to reduce glitches in the ion implanter.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: June 23, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: William T. Levay, George M. Gammel, Bon-Woong Koo, Brant S. Binns, Richard M. White
  • Publication number: 20150034837
    Abstract: An ion source includes an ion source chamber, a gas source to provide a fluorine-containing gas species to the ion source chamber and a cathode disposed in the ion source chamber configured to emit electrons to generate a plasma within the ion source chamber. The ion source chamber and cathode are comprised of a refractory metal. A phosphide insert is disposed within the ion source chamber and presents an exposed surface area that is configured to generate gas phase phosphorous species when the plasma is present in the ion source chamber, wherein the phosphide component is one of boron phosphide, tungsten phosphide, aluminum phosphide, nickel phosphide, calcium phosphide and indium phosphide.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 5, 2015
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, William T. Levay, Richard M. White, Eric R. Cobb
  • Publication number: 20150007941
    Abstract: A plasma processing apparatus includes a process chamber housing defining a process chamber, a platen positioned in the process chamber for supporting a workpiece, a source configured to generate plasma in the process chamber, and a biasing system. The biasing system is configured to bias the platen with a negatively biased DC signal to attract ions from the plasma towards the workpiece during a first processing time interval and configured to bias the platen with a positively biased DC signal to repel ions from the platen towards interior surfaces of the process chamber housing during a cleaning time interval. The cleaning time interval is separate from the first processing time interval and occurs after the first processing time interval.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Inventors: Bon-Woong Koo, Richard M. White
  • Patent number: 8916056
    Abstract: A plasma processing apparatus includes a process chamber housing defining a process chamber, a platen positioned in the process chamber for supporting a workpiece, a source configured to generate plasma in the process chamber, and a biasing system. The biasing system is configured to bias the platen to attract ions from the plasma towards the workpiece during a first processing time interval and configured to bias the platen to repel ions from the platen towards interior surfaces of the process chamber housing during a cleaning time interval. The cleaning time interval is separate from the first processing time interval and occurring after the first processing time interval.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: December 23, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Richard M. White
  • Patent number: 8847606
    Abstract: A method for assessing insulation deterioration in a live underground power cable may include, in one embodiment, attaching a coupling device to a live underground power cable and using the coupling device to couple a test signal onto the power cable. The power cable may carry a normal AC power signal at a first frequency, while the test signal may have a second frequency different from the first frequency. The test signal may be detected after it has traveled a distance along the power cable. It may then be analyzed to determine a change in velocity and/or attenuation of the test signal as a function of the normal AC power signal. The severity of water trees in the power cable may be inferred based on the magnitude of the change.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: September 30, 2014
    Assignee: University of California
    Inventors: Richard M. White, Igor Paprotny, Augusto Giovanni Gonzalez
  • Patent number: 8806915
    Abstract: An apparatus for measuring concentrations of airborne particulate matter may include, in one embodiment, a primary channel to receive air samples from the external environment. The air samples include particles of varying sizes. A microfluidic circuit communicates with the primary channel and small particles (having a size less than a threshold size) are diverted around a bend into a secondary channel. Remaining larger particles are unable to make the bend and continue through the primary channel. A mass-sensitive element communicating with the secondary channel includes a collection surface to collect the small particles. A resonant frequency of the mass-sensitive element is reduced in proportion to the mass of the particles collected.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: August 19, 2014
    Assignee: University of California
    Inventors: Richard M. White, Igor Paprotny, Frederick Doering
  • Patent number: 8756021
    Abstract: A method of controlling operation of an indirectly-heated cathode (IHC) ion source includes a step of measuring a rate of loss of cathode weight of the IHC ion source that occurs during operation using a first cathode configuration and under a first set of operation conditions. A maximum weight loss for the first cathode configuration is determined, and a cathode lifetime is calculated based upon the rate of cathode weight loss and the maximum weight loss. A further method includes receiving a minimum source bias power value for operation of a cathode in a first configuration, measuring a rate of decrease in source bias power for a cathode in the first configuration, and calculating a lifetime of the cathode based upon the minimum source bias power and rate of decrease in source bias power.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: June 17, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Russell J. Low, Kevin M. Daniels, Bon-Woong Koo, Richard M. White, James W. Blanchette
  • Patent number: 8723397
    Abstract: Provided are various embodiments of an adjustment circuit, having a base layer and a piezoelectric layer juxtaposed relative to the base layer and including a first electrode such that when the piezoelectric layer is stressed a polarization charge appears between the base layer and one side of the piezoelectric layer and an opposite polarization charge appears on an opposite side of the piezoelectric layer.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: May 13, 2014
    Assignee: University of California
    Inventors: Richard M. White, Igor Paprotny, Qiliang Xu
  • Publication number: 20140127394
    Abstract: Methods of reducing glitch rates within an ion implanter are described. In one embodiment, a plasma-assisted conditioning is performed, wherein the bias voltage to the extraction electrodes is modified so as to inhibit the formation of an ion beam. The power supplied to the plasma generator in the ion source is increased, thereby creating a high density plasma, which is not extracted by the extraction electrodes. This plasma extends from the arc chamber through the extraction aperture. Energetic ions then condition the extraction electrodes. In another embodiment, a plasma-assisted cleaning is performed. In this mode, the extraction voltage applied to the arc chamber body is modulated between two voltages so as to clean both the extraction electrodes and the faceplate of the arc chamber body.
    Type: Application
    Filed: October 25, 2013
    Publication date: May 8, 2014
    Inventors: George M. Gammel, Brant S. Binns, Piotr R. Lubicki, Bon-Woong Koo, Richard M. White, Kevin M. Daniels
  • Publication number: 20140106571
    Abstract: A plasma processing apparatus includes a process chamber housing defining a process chamber, a platen positioned in the process chamber for supporting a workpiece, a source configured to generate plasma in the process chamber, and a biasing system. The biasing system is configured to bias the platen to attract ions from the plasma towards the workpiece during a first processing time interval and configured to bias the platen to repel ions from the platen towards interior surfaces of the process chamber housing during a cleaning time interval. The cleaning time interval is separate from the first processing time interval and occurring after the first processing time interval.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 17, 2014
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Richard M. White
  • Publication number: 20140099430
    Abstract: Methods of reducing glitch rates within an ion implanter are described. In one embodiment, a plasma-assisted conditioning is performed, wherein the bias voltage to the extraction electrodes is modified so as to inhibit the formation of an ion beam. The power supplied to the plasma generator in the ion source is increased, thereby creating a high density plasma, which is not extracted by the extraction electrodes. This plasma extends from the ion source chamber through the extraction aperture. Energetic ions then condition the extraction electrodes. In another embodiment, a plasma-assisted cleaning is performed. In this mode, the extraction electrodes are moved further from the ion source chamber, and a different source gas is used to create the plasma. In some embodiments, a combination of these modes is used to reduce glitches in the ion implanter.
    Type: Application
    Filed: September 23, 2013
    Publication date: April 10, 2014
    Inventors: William T. Levay, George M. Gammel, Bon-Woong Koo, Brant S. Binns, Richard M. White
  • Publication number: 20140031383
    Abstract: The present invention is directed to methods for treatment of melanoma using an inhibitor of dihydroorotate dehydrogenase (DHODH) and to combination therapies that involve administering to a subject an inhibitor of oncogenic BRAF (e.g. BRAF(V600E)), as well as an inhibitor of dihydroorotate dehydrogenase (DHODH). Assays for identifying compounds useful for the treatment of melanoma are also provided. The methods herein are directed to screening for compounds or agents that inhibit neural crest progenitor formation in a zebra fish model of melanoma.
    Type: Application
    Filed: February 8, 2012
    Publication date: January 30, 2014
    Applicants: DANA-FARBER CANCER INSTITUTE, INC., CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Leonard Zon, Richard M. White
  • Publication number: 20130287964
    Abstract: An ion implantation system including a plasma source, a mask-slit, and a plasma chamber. The plasma source is configured to generate a plasma within the plasma chamber in response to the introduction of a gas therein. The mask-slit is electrically isolated from the plasma chamber. A positive voltage bias is applied to the plasma chamber above a bias potential used to generate the plasma. The positive voltage bias drives the plasma potential to accelerate the ions to a desired implant energy. The accelerated ions pass through an aperture in the mask-slit and are directed toward a substrate for implantation. The mask-slit is electrically isolated from the plasma chamber and is maintained at ground potential with respect to the plasma.
    Type: Application
    Filed: April 26, 2012
    Publication date: October 31, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Svetlana B. Radovanov, Victor M. Benveniste, Bon-Woong Koo, Richard M. White, Kevin M. Daniels
  • Patent number: 8461558
    Abstract: A system for implanting a substrate. The system includes a substrate holder disposed within a process chamber of the system and coupled to ground. The system also includes an electrode disposed within the process chamber and coupled to a power source, the power source configured to supply voltage to the electrode as an unbalanced voltage pulse train, wherein a negative peak voltage during a negative voltage pulse period of the unbalanced voltage pulse train is higher than a positive peak voltage during a positive voltage pulse period of the unbalanced pulse train. The system further includes a movable mask, wherein the movable mask is configured to move between a first position proximate the substrate holder, and a second position proximate the driven electrode.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: June 11, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Richard M. White, Kevin M. Daniels
  • Publication number: 20130036793
    Abstract: An apparatus for measuring concentrations of airborne particulate matter may include, in one embodiment, a primary channel to receive air samples from the external environment. The air samples include particles of varying sizes. A microfluidic circuit communicates with the primary channel and small particles (having a size less than a threshold size) are diverted around a bend into a secondary channel. Remaining larger particles are unable to make the bend and continue through the primary channel. A mass-sensitive element communicating with the secondary channel includes a collection surface to collect the small particles. A resonant frequency of the mass-sensitive element is reduced in proportion to the mass of the particles collected.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 14, 2013
    Applicant: University of California
    Inventors: Richard M. White, Igor Paprotny, Frederick Doering
  • Publication number: 20130001440
    Abstract: A system for implanting a substrate. The system includes a substrate holder disposed within a process chamber of the system and coupled to ground. The system also includes an electrode disposed within the process chamber and coupled to a power source, the power source configured to supply voltage to the electrode as an unbalanced voltage pulse train, wherein a negative peak voltage during a negative voltage pulse period of the unbalanced voltage pulse train is higher than a positive peak voltage during a positive voltage pulse period of the unbalanced pulse train. The system further includes a movable mask, wherein the movable mask is configured to move between a first position proximate the substrate holder, and a second position proximate the driven electrode.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 3, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Bon-Woong Koo, Richard M. White, Kevin M. Daniels
  • Publication number: 20120306510
    Abstract: A method for assessing insulation deterioration in a live underground power cable may include, in one embodiment, attaching a coupling device to a live underground power cable and using the coupling device to couple a test signal onto the power cable. The power cable may carry a normal AC power signal at a first frequency, while the test signal may have a second frequency different from the first frequency. The test signal may be detected after it has traveled a distance along the power cable. It may then be analyzed to determine a change in velocity and/or attenuation of the test signal as a function of the normal AC power signal. The severity of water trees in the power cable may be inferred based on the magnitude of the change.
    Type: Application
    Filed: June 2, 2011
    Publication date: December 6, 2012
    Applicant: University of California
    Inventors: Richard M. White, Igor Paprotny, Augusto Giovanni Gonzalez
  • Publication number: 20120126804
    Abstract: An apparatus for detecting a faulty concentric neutral wire in a live power distribution cable may include, in one embodiment, a housing for sliding along a surface of a power distribution cable, a magnetic sensor, and a motion device. The magnetic sensor may be coupled to the housing and configured to detect a magnetic field produced by each concentric neutral wire as the housing moves along the surface of the cable. The motion device may also be coupled to the housing, and may detect motion of the housing relative to the cable. In some embodiments, a communication device may communicate data describing the magnetic field and motion to a destination device.
    Type: Application
    Filed: May 23, 2011
    Publication date: May 24, 2012
    Applicant: University of California
    Inventors: Richard M. White, Igor Paprotny, Michael Seidel, Kanna Krishnan, Eli S. Leland
  • Publication number: 20120101742
    Abstract: A method of controlling operation of an indirectly-heated cathode (IHC) ion source comprises a step of measuring a rate of loss of cathode weight of the IHC ion source that occurs during operation using a first cathode configuration and under a first set of operation conditions. A maximum weight loss for the first cathode configuration is determined, and a cathode lifetime is calculated based upon the rate of cathode weight loss and the maximum weight loss. A further method comprises receiving a minimum source bias power value for operation of a cathode in a first configuration, measuring a rate of decrease in source bias power for a cathode in the first configuration, and calculating a lifetime of the cathode based upon the minimum source bias power and rate of decrease in source bias power.
    Type: Application
    Filed: October 26, 2010
    Publication date: April 26, 2012
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Russell J. Low, Kevin M. Daniels, Bon-Woong Koo, Richard M. White, James W. Blanchette
  • Publication number: 20120007468
    Abstract: Provided are various embodiments of an adjustment circuit, having a base layer and a piezoelectric layer juxtaposed relative to the base layer and including a first electrode such that when the piezoelectric layer is stressed a polarization charge appears between the base layer and one side of the piezoelectric layer and an opposite polarization charge appears on an opposite side of the piezoelectric layer.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 12, 2012
    Applicant: University of California
    Inventors: Richard M. White, Igor Paprotny, Qiliang Xu