Patents by Inventor Richard P. Schneider

Richard P. Schneider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7092425
    Abstract: Using lateral physical modulation, the optical properties of VCSELs can be stabilized and controlled by spatially varying the characteristics of the device material. This results in stabilization of the linewidth, the numerical aperture, the near and far field, as a function of bias and temperature. A VCSEL includes a substrate, an active region sandwiched between an upper and lower distributed Bragg reflector (DBRs), and electrical contacts. A light emission property e.g. the index of refraction, may be varied by patterning or texturing the surface of the substrate prior to growth of the epitaxial DBR layers or at least one layer of either the upper or lower DBRs, or by inserting a non-planar layer.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: August 15, 2006
    Assignee: Avago Technologies General IP (Singapore) Ptd. Ltd.
    Inventors: Richard P. Schneider, Frank H. Peters, An-Nien Cheng, Laura Giovane, Hao-chung Kuo, Sheila K. Mathis
  • Patent number: 7087449
    Abstract: An active semiconductor device, such as, buried heterostructure semiconductor lasers, LEDs, modulators, photodiodes, heterojunction bipolar transistors, field effect transistors or other active devices, comprise a plurality of semiconductor layers formed on a substrate with one of the layers being an active region. A current channel is formed through this active region defined by current blocking layers formed on adjacent sides of a designated active region channel where the blocking layers substantially confine the current through the channel. The blocking layers are characterized by being an aluminum-containing Group III–V compound, i.e., an Al-III–V layer, intentionally doped with oxygen from an oxide source. Also, wet oxide process or a deposited oxide source may be used to laterally form a native oxide of the Al-III–V layer. An example of a material system for this invention useful at optical telecommunication wavelengths is InGaAsP/InP where the Al-III–V layer comprises InAlAs:O or InAlAs:O:Fe.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: August 8, 2006
    Assignee: Infinera Corporation
    Inventors: Fred A. Kish, Jr., Sheila K. Mathis, Charles H. Joyner, Richard P. Schneider
  • Patent number: 7058246
    Abstract: A monolithic photonic integrated circuit (PIC) chip comprises an array of modulated sources providing a plurality of channel signals of different wavelengths and an optical combiner coupled to receive the channel signals and produce a combined output of the channel signals. The arrays of modulated sources are formed as ridge waveguides to enhance the output power from the respective modulated sources so that the average output power from the sources is approximately 2 to 4 times higher than in the case of comparable arrays of modulated sources formed as buried waveguides.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: June 6, 2006
    Assignee: Infinera Corporation
    Inventors: Charles H. Joyner, Fred A. Kish, Jr., Frank H. Peters, Atul Mathur, David F. Welch, Andrew G. Dentai, Damien Lambert, Richard P. Schneider, Mark J. Missey
  • Patent number: 7058263
    Abstract: An optical transport network comprises a monolithic transmitter photonic integrated circuit (TxPIC) InP-based chip and a monolithic receiver photonic integrated circuit (RxPIC) InP-based chip.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: June 6, 2006
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Radhakrishnan L. Nagarajan, Fred A. Kish, Jr., Mark J. Missey, Vincent G. Dominic, Atul Mathur, Frank H. Peters, Charles H. Joyner, Richard P. Schneider, Ting-Kuang Chiang
  • Patent number: 7043109
    Abstract: A method of in-wafer testing is provided for a monolithic photonic integrated circuit (PIC) formed in a semiconductor wafer where each such in-wafer circuit comprises two or more integrated electro-optic components, one of each in tandem forming a signal channel in the circuit. The method includes the provision of a first integrated photodetector at a rear end of each signal channel and a second integrated photodetector at forward end of each signal channel. Then, the testing is accomplished, first, by sequentially operating a first of a selected channel electro-optic component in a selected circuit to monitor light output from a channel via its first corresponding channel photodetector and adjusting its operating characteristics by detecting that channel electro-optic component output via its second corresponding channel photodetector to provide first calibration data.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: May 9, 2006
    Assignee: Infinera Corporation
    Inventors: Fred A. Kish, Jr., Charles H. Joyner, Mark J. Missey, Frank H. Peters, Radhakrishnan L. Nagarajan, Richard P. Schneider
  • Patent number: 6985648
    Abstract: A method of in-wafer testing is provided for a monolithic photonic integrated circuit (PIC) formed in a semiconductor wafer where each such in-wafer circuit comprises two or more integrated electro-optic components, one of each in tandem forming a signal channel in the circuit. The method includes the provision of a first integrated photodetector at a rear end of each signal channel and a second integrated photodetector at forward end of each signal channel. Then, the testing is accomplished, first, by sequentially operating a first of a selected channel electro-optic component in a selected circuit to monitor light output from a channel via its first corresponding channel photodetector and adjusting its operating characteristics by detecting that channel electro-optic component output via its second corresponding channel photodetector to provide first calibration data.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: January 10, 2006
    Assignee: Infinera Corporation
    Inventors: Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Frank H. Peters, Richard P. Schneider, Charles H. Joyner
  • Patent number: 6921925
    Abstract: In photonic integrated circuits (PICs) having at least one active semiconductor device, such as, a buried heterostructure semiconductor laser, LED, modulator, photodiode, heterojunction bipolar transistor, field effect transistor or other active device, a plurality of semiconductor layers are formed on a substrate with one of the layers being an active region. A current channel is formed through this active region defined by current blocking layers formed on adjacent sides of a designated active region channel where the blocking layers substantially confine the current through the channel. The blocking layers are characterized by being an aluminum-containing Group III-V compound, i.e., an Al-III-V layer, intentionally doped with oxygen from an oxide source. Also, wet oxide process or a deposited oxide source may be used to laterally form a native oxide of the Al-III-V layer.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: July 26, 2005
    Inventors: Fred A. Kish, Jr., Sheila K. Mathis, Charles H. Joyner, Richard P. Schneider
  • Patent number: 6891202
    Abstract: An active semiconductor device, such as, buried heterostructure semiconductor lasers, LEDs, modulators, photodiodes, heterojunction bipolar transistors, field effect transistors or other active devices, comprise a plurality of semiconductor layers formed on a substrate with one of the layers being an active region. A current channel is formed through this active region defined by current blocking layers formed on adjacent sides of a designated active region channel where the blocking layers substantially confine the current through the channel. The blocking layers are characterized by being an aluminum-containing Group III-V compound, i.e., an Al-III-V layer, intentionally doped with oxygen from an oxide source. Also, wet oxide process or a deposited oxide source may be used to laterally form a native oxide of the Al-III-V layer. An example of a material system for this invention useful at optical telecommunication wavelengths is InGaAsP/InP where the Al-III-V layer comprises InAlAs:O or InAlAs:O:Fe.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: May 10, 2005
    Assignee: Infinera Corporation
    Inventors: Fred A. Kish, Jr., Sheila K. Mathis, Charles H. Joyner, Richard P. Schneider
  • Patent number: 6853663
    Abstract: An optical semiconductor device having an active layer for generating light via the recombination of holes and electrons therein. The active layer is part of a plurality of semiconductor layers including an n-p junction between an n-type layer and a p-type layer. The active layer has a polarization field therein having a field direction that depends on the orientation of the active layer when the active layer is grown. In the present invention, the polarization field in the active layer has an orientation such that the polarization field is directed from the n-layer to the p-layer.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: February 8, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: Ghulam Hasnain, Richard P. Schneider, Scott W. Corzine, Mark Hueschen, Tetsuya Takeuchi, Danny E. Mars
  • Publication number: 20040235213
    Abstract: An active semiconductor device, such as, buried heterostructure semiconductor lasers, LEDs, modulators, photodiodes, heterojunction bipolar transistors, field effect transistors or other active devices, comprise a plurality of semiconductor layers formed on a substrate with one of the layers being an active region. A current channel is formed through this active region defined by current blocking layers formed on adjacent sides of a designated active region channel where the blocking layers substantially confine the current through the channel. The blocking layers are characterized by being an aluminum-containing Group III-V compound, i.e., an Al-III-V layer, intentionally doped with oxygen from an oxide source. Also, wet oxide process or a deposited oxide source may be used to laterally form a native oxide of the Al-III-V layer. An example of a material system for this invention useful at optical telecommunication wavelengths is InGaAsP/InP where the Al-III-V layer comprises InAlAs:O or InAlAs:O:Fe.
    Type: Application
    Filed: June 24, 2004
    Publication date: November 25, 2004
    Inventors: Fred A. Kish, Sheila K. Mathis, Charles H. Joyner, Richard P. Schneider
  • Publication number: 20040067006
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Application
    Filed: December 11, 2002
    Publication date: April 8, 2004
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Ting-Kuang Chiang, Robert Grencavich, Vinh D. Nguyen, Donald J. Pavinski, Marco E. Sosa
  • Publication number: 20040033004
    Abstract: A photonic integrated circuits (PICs), also referred to as opto-electronic integrated circuits (OEICs), and more particularly to a PIC in the form of an optical receiver PIC or RxPIC for use in an optical transport networks. Also, an optical transmitter PIC (TxPIC) is also disclosed in conjunction with an RxPIC in an optical transport network. The chip is cast from an InP wafer and is made from Group III-V elemental materials in the InGaAsP/InP regime with fabrication accomplished through selective metalorganic vapor phase epitaxy (MOVPE) or also known as metalorganic chemical vapor deposition (MOCVD). Integrated on the chip, starting at the input end which is coupled to receive multiplexed optical data signals from an optical transport network is an optical amplifier, an optical demultiplexer, and a plurality of on-chip photodiodes (PDs) each to receive a demultiplexed data signal from the AWG DEMUX for optical-to-electrical signal conversion.
    Type: Application
    Filed: October 8, 2002
    Publication date: February 19, 2004
    Inventors: David F. Welch, Radhakrishnan L. Nagarajan, Fred A. Kish, Mark J. Missey, Vincent G. Dominic, Atul Mathur, Frank H. Peters, Charles H. Joyner, Richard P. Schneider, Ting-Kuang Chiang
  • Patent number: 6630692
    Abstract: III-Nitride light emitting diodes having improved performance are provided. In one embodiment, a light emitting device includes a substrate, a nucleation layer disposed on the substrate, a defect reduction structure disposed above the nucleation layer, and an n-type III-Nitride semiconductor layer disposed above the defect reduction structure. The n-type layer has, for example, a thickness greater than about one micron and a silicon dopant concentration greater than or equal to about 1019 cm−3. In another embodiment, a light emitting device includes a III-Nitride semiconductor active region that includes at least one barrier layer either uniformly doped with an impurity or doped with an impurity having a concentration graded in a direction substantially perpendicular to the active region.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: October 7, 2003
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Werner Goetz, Nathan Fredrick Gardner, Richard Scott Kern, Andrew Youngkyu Kim, Anneli Munkholm, Stephen A. Stockman, Christopher P. Kocot, Richard P. Schneider, Jr.
  • Publication number: 20030173571
    Abstract: An active semiconductor device, such as, buried heterostructure semiconductor lasers, LEDs, modulators, photodiodes, heterojunction bipolar transistors, field effect transistors or other active devices, comprise a plurality of semiconductor layers formed on a substrate with one of the layers being an active region. A current channel is formed through this active region defined by current blocking layers formed on adjacent sides of a designated active region channel where the blocking layers substantially confine the current through the channel. The blocking layers are characterized by being an aluminum-containing Group III-V compound, i.e., an Al-III-V layer, intentionally doped with oxygen from an oxide source. Also, wet oxide process or a deposited oxide source may be used to laterally form a native oxide of the Al-III-V layer. An example of a material system for this invention useful at optical telecommunication wavelengths is InGaAsP/InP where the Al-III-V layer comprises InAlAs:O or InAlAs:O:Fe.
    Type: Application
    Filed: December 16, 2002
    Publication date: September 18, 2003
    Inventors: Fred A. Kish, Sheila K. Mathis, Charles H. Joyner, Richard P. Schneider
  • Publication number: 20030095737
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Application
    Filed: October 8, 2002
    Publication date: May 22, 2003
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Publication number: 20030081878
    Abstract: A monolithic photonic integrated circuit (PIC) chip comprises an array of modulated sources providing a plurality of channel signals of different wavelengths and an optical combiner coupled to receive the channel signals and produce a combined output of the channel signals. The arrays of modulated sources are formed as ridge waveguides to enhance the output power from the respective modulated sources so that the average output power from the sources is approximately 2 to 4 times higher than in the case of comparable arrays of modulated sources formed as buried waveguides.
    Type: Application
    Filed: October 8, 2002
    Publication date: May 1, 2003
    Inventors: Charles H. Joyner, Fred A. Kish, Frank H. Peters, Atul Mathur, David F. Welch, Andrew G. Dentai, Damien Lambert, Richard P. Schneider, Mark J. Missey
  • Patent number: 6526082
    Abstract: A light-generating device such as a laser or LED. A light-generating device according to the present invention includes a first n-electrode layer in contact with a first n-contact layer, the first n-contact layer including an n-doped semiconductor. Light is generated by the recombination of holes and electrons in an n-p active layer. The n-p active layer includes a first p-doped layer in contact with a first n-doped layer, the first n-doped layer being connected electrically with the first n-contact layer. A p-n reverse-biased tunnel diode constructed from a second p-doped layer in contact with a second n-doped layer is connected electrically such that the second p-doped layer is connected electrically with the first p-layer. A second n-contact layer constructed from an n-doped semiconductor material is connected electrically to the second n-doped layer. A second n-electrode layer is placed in contact with the second n-contact layer.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: February 25, 2003
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Scott W. Corzine, Richard P. Schneider, Jr., Ghulam Hasnain
  • Patent number: 6500257
    Abstract: An epitaxial material grown laterally in a trench allows for the fabrication of a trench-based semiconductor material that is substantially low in dislocation density. Initiating the growth from a sidewall of a trench minimizes the density of dislocations present in the lattice growth template, which minimizes the dislocation density in the regrown material. Also, by allowing the regrowth to fill and overflow the trench, the low dislocation density material can cover the entire surface of the substrate upon which the low dislocation density material is grown. Furthermore, with successive iterations of the trench growth procedure, higher quality material can be obtained. Devices that require a stable, high quality epitaxial material can then be fabricated from the low dislocation density material.
    Type: Grant
    Filed: April 17, 1998
    Date of Patent: December 31, 2002
    Assignee: Agilent Technologies, Inc.
    Inventors: Shih-Yuan Wang, Changhua Chen, Yong Chen, Scott W. Corzine, R. Scott Kern, Richard P. Schneider, Jr.
  • Publication number: 20020190259
    Abstract: III-Nitride light emitting diodes having improved performance are provided. In one embodiment, a light emitting device includes a substrate, a nucleation layer disposed on the substrate, a defect reduction structure disposed above the nucleation layer, and an n-type III-Nitride semiconductor layer disposed above the defect reduction structure. The n-type layer has, for example, a thickness greater than about one micron and a silicon dopant concentration greater than or equal to about 1019 cm−3. In another embodiment, a light emitting device includes a III-Nitride semiconductor active region that includes at least one barrier layer either uniformly doped with an impurity or doped with an impurity having a concentration graded in a direction substantially perpendicular to the active region.
    Type: Application
    Filed: May 29, 2001
    Publication date: December 19, 2002
    Inventors: Werner Goetz, Nathan Fredrick Gardner, Richard Scott Kern, Andrew Youngkyu Kim, Anneli Munkholm, Stephen A. Stockman, Christopher P. Kocot, Richard P. Schneider
  • Publication number: 20020110172
    Abstract: An optical semiconductor device having an active layer for generating light via the recombination of holes and electrons therein. The active layer is part of a plurality of semiconductor layers including an n-p junction between an n-type layer and a p-type layer. The active layer has a polarization field therein having a field direction that depends on the orientation of the active layer when the active layer is grown. In the present invention, the polarization field in the active layer has an orientation such that the polarization field is directed from the n-layer to the p-layer.
    Type: Application
    Filed: December 21, 2001
    Publication date: August 15, 2002
    Inventors: Ghulam Hasnain, Richard P. Schneider, Scott W. Corzine, Mark Hueschen, Tetsuya Takeuchi, Danny E. Mars