Patents by Inventor Richard Rhee

Richard Rhee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140135812
    Abstract: A system for treatment of an aneurysm includes an intrasaccular device that can be delivered using a catheter. The device can include at least one expandable structure adapted to transition from a compressed configuration to an expanded configuration when released into the aneurysm. The expandable structure can have a specific shape or porosity. Multiple expandable structures can also be used, in which case each of the expandable structures can have a unique shape or porosity profile. The morphology of the aneurysm and orientation of any connecting arteries can determine the type, size, shape, number, and porosity profile of the expandable structure used in treating the aneurysm.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 15, 2014
    Applicant: COVIDIEN LP
    Inventors: Vincent DIVINO, Earl Frederick BARDSLEY, Richard RHEE, Madhur Arunrao KADAM, Julie KULAK
  • Publication number: 20130190801
    Abstract: Systems and devices for endovascular treatment of intracranial aneurysms are described. Various configurations of coiled implants may be used as stenting devices or aneurysm coils. The implants include one or more filaments wound about a longitudinal axis to form a generally tubular shape. Lateral flexibility of the implants may be manipulated by, for example, adjusting a pitch between adjacent filaments, using different materials for the filaments, employing different filament cross-sectional shapes, grouping filaments into pluralities of varying flexibilities, and nesting inner coils within outer coils.
    Type: Application
    Filed: January 20, 2012
    Publication date: July 25, 2013
    Applicant: TYCO HEALTHCARE GROUP LP
    Inventors: Vince DIVINO, Richard RHEE, Rich Kusleika
  • Publication number: 20100081868
    Abstract: Systems, methods and devices are provided for treating heart failure patients suffering from various levels of heart dilation. Such heart dilation is treated by reshaping the heart anatomy with the use of shape memory elements. Such reshaping changes the geometry of portions of the heart, particularly the right or left ventricles, to increase contractibility of the ventricles thereby increasing the stroke volume which in turn increases the cardiac output of the heart. The shape memory elements have an original shape and at least one memory shape. The elements are implanted within the heart tissue or attached externally and/or internally to a surface of the heart when in the original shape. The elements are then activated to transition from the original shape to one of the at least one memory shapes. Transitioning of the elements cause the associated heart tissue areas to readjust position, such as to decrease the width of the ventricles.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 1, 2010
    Applicant: MICARDIA CORPORATION
    Inventors: Shahram Moaddeb, Samuel M. Shaolian, Emanuel Shaoulian, Richard Rhee, Steven C. Anderson
  • Patent number: 7594887
    Abstract: Systems, methods and devices are provided for treating heart failure patients suffering from various levels of heart dilation. Such heart dilation is treated by reshaping the heart anatomy with the use of shape memory elements. Such reshaping changes the geometry of portions of the heart, particularly the right or left ventricles, to increase contractibility of the ventricles thereby increasing the stroke volume which in turn increases the cardiac output of the heart. The shape memory elements have an original shape and at least one memory shape. The elements are implanted within the heart tissue or attached externally and/or internally to a surface of the heart when in the original shape. The elements are then activated to transition from the original shape to one of the at least one memory shapes. Transitioning of the elements cause the associated heart tissue areas to readjust position, such as to decrease the width of the ventricles.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: September 29, 2009
    Assignee: MiCardia Corporation
    Inventors: Shahram Moaddeb, Samuel M. Shaolian, Emanuel Shaoulian, Richard Rhee, Steven C. Anderson
  • Publication number: 20080293995
    Abstract: Systems, methods and devices are provided for treating heart failure patients suffering from various levels of heart dilation. Heart dilation treated by reshaping the heart anatomy with the use of magnetic forces. Such reshaping changes the geometry of portions of the heart, particularly the right or left ventricles, to increase contractibility of the ventricles thereby increasing the stroke volume which in turn increases the cardiac output of the heart. The magnetic forces are applied with the use of one or more magnetic elements which are implanted within the heart tissue or attached externally and/or internally to a surface of the heart. The various charges of the magnetic forces interact causing the associated heart tissue areas to readjust position, such as to decrease the width of the ventricles. Such repositioning is maintained over time by the force of the magnetic elements, allowing the damaging effects of heart dilation to slow in progression or reverse.
    Type: Application
    Filed: July 21, 2008
    Publication date: November 27, 2008
    Applicant: MICARDIA CORPORATION
    Inventors: Shahram Moaddeb, Samuel M. Shaolian, Emanuel Shaoulian, Richard Rhee, Steven C. Anderson
  • Patent number: 7402134
    Abstract: Systems, methods and devices are provided for treating heart failure patients suffering from various levels of heart dilation. Heart dilation treated by reshaping the heart anatomy with the use of magnetic forces. Such reshaping changes the geometry of portions of the heart, particularly the right or left ventricles, to increase contractibility of the ventricles thereby increasing the stroke volume which in turn increases the cardiac output of the heart. The magnetic forces are applied with the use of one or more magnetic elements which are implanted within the heart tissue or attached externally and/or internally to a surface of the heart. The various charges of the magnetic forces interact causing the associated heart tissue areas to readjust position, such as to decrease the width of the ventricles. Such repositioning is maintained over time by the force of the magnetic elements, allowing the damaging effects of heart dilation to slow in progression or reverse.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: July 22, 2008
    Assignee: MiCardia Corporation
    Inventors: Shahram Moaddeb, Samuel M. Shaolian, Emanuel Shaoulian, Richard Rhee, Steven C. Anderson
  • Publication number: 20080097593
    Abstract: Methods of implanting an annuloplasty ring to correct maladies of the mitral annulus that not only reshapes the annulus but also reconfigures the adjacent left ventricular muscle wall. The ring may be continuous and is made of a relatively rigid material, such as Stellite. The ring has a generally oval shape that is three-dimensional at least on the posterior side. A posterior portion of the ring rises or bows upward from adjacent sides to pull the posterior aspect of the native annulus farther up than its original, healthy shape. In doing so, the ring also pulls the ventricular wall upward which helps mitigate some of the effects of congestive heart failure. Further, one or both of the posterior and anterior portions of the ring may also bow inward.
    Type: Application
    Filed: December 18, 2007
    Publication date: April 24, 2008
    Inventors: Steven Bolling, Richard Rhee
  • Publication number: 20080039681
    Abstract: Systems, methods and devices are provided for treating heart failure patients suffering from various levels of heart dilation. Such heart dilation is treated by reshaping the heart anatomy with the use of shape memory elements. Such reshaping changes the geometry of portions of the heart, particularly the right or left ventricles, to increase contractibility of the ventricles thereby increasing the stroke volume which in turn increases the cardiac output of the heart. The shape memory elements have an original shape and at least one memory shape. The elements are implanted within the heart tissue or attached externally and/or internally to a surface of the heart when in the original shape. The elements are then activated to transition from the original shape to one of the at least one memory shapes. Transitioning of the elements cause the associated heart tissue areas to readjust position, such as to decrease the width of the ventricles.
    Type: Application
    Filed: October 22, 2007
    Publication date: February 14, 2008
    Applicant: MICARDIA CORPORATION
    Inventors: Shahram Moaddeb, Samuel Shaolian, Emanuel Shaoulian, Richard Rhee, Steven Anderson
  • Patent number: 7285087
    Abstract: Systems, methods and devices are provided for treating heart failure patients suffering from various levels of heart dilation. Such heart dilation is treated by reshaping the heart anatomy with the use of shape memory elements. Such reshaping changes the geometry of portions of the heart, particularly the right or left ventricles, to increase contractibility of the ventricles thereby increasing the stroke volume which in turn increases the cardiac output of the heart. The shape memory elements have an original shape and at least one memory shape. The elements are implanted within the heart tissue or attached externally and/or internally to a surface of the heart when in the original shape. The elements are then activated to transition from the original shape to one of the at least one memory shapes. Transitioning of the elements cause the associated heart tissue areas to readjust position, such as to decrease the width of the ventricles.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: October 23, 2007
    Assignee: MiCardia Corporation
    Inventors: Shahram Moaddeb, Samuel M. Shaolian, Emanuel Shaoulian, Richard Rhee, Steven C. Anderson
  • Publication number: 20070123974
    Abstract: Provided is a vascular stent used in percutaneous coronary intervention (PCI) which is specially designed for multiple drug loading and improved drug elution, including: a plurality of ring structures extending in the longitudinal direction of the vascular stent, including a plurality of struts disposed in a zigzag formation and connected to each other to form a cylindrical loop; and a plurality of link structures disposed between the ring structures and connecting the ring structures in the longitudinal direction of the vascular stent, wherein each of the struts in a ring structure is connected to adjacent struts in the same ring structure through one of a plurality of linking ends, a slot loaded with drugs is formed in the strut in the longitudinal direction of the strut, and a multi-layer structure comprising a plurality of layers of drugs is loaded in the slot.
    Type: Application
    Filed: October 23, 2006
    Publication date: May 31, 2007
    Inventors: Jeong Park, Richard Rhee
  • Publication number: 20070067027
    Abstract: Systems, methods and devices are provided for activation of an adjustable annuloplasty device. The devices may include a catheter system for percutaneously activating an adjustable annuloplasty device, including a handle assembly, a shaft assembly having at least one fluid lumen, and a distal element. The shaft assembly extends between the handle assembly and the distal element, the distal element being in fluid communication with the handle assembly via the at least one fluid lumen. The distal element includes an elongated core having a first port and an expandable member. The core extends through the expandable member and the expandable member is movable between a collapsed position and an inflated position. The distal element has a preset shape in the inflated position, having a long axis that is curvilinear. A surface of the distal element extends along the long axis and is configured to conform to a curvilinear surface of the annuloplasty device.
    Type: Application
    Filed: September 13, 2006
    Publication date: March 22, 2007
    Applicant: Micardia Corporation
    Inventors: Shahram Moaddeb, Richard Rhee, Steve Anderson
  • Publication number: 20070055368
    Abstract: Methods and devices are provided for support of a body structure. The devices can be adjusted within the body of a patient in a minimally invasive or non-invasive manner, such as by applying energy percutaneously or external to the patient's body. The energy may include, for example, acoustic energy, radio frequency energy, light energy and magnetic energy. Thus, as the body structure changes size and/or shape, the size and/or shape of the annuloplasty rings can be adjusted to provide continued reinforcement. In certain embodiments, the devices comprise a shape memory material, and further include a body member and an insert member. The body member has a circumference and a slot that extends at least partially along the circumference of the body. The insert member extends at least partially along the circumference of the body.
    Type: Application
    Filed: August 31, 2006
    Publication date: March 8, 2007
    Inventors: Richard Rhee, Emanuel Shaoulian, Shahram Moaddeb, Samuel Shaolian
  • Publication number: 20060015002
    Abstract: Systems, methods and devices are provided for treating heart failure patients suffering from various levels of heart dilation. Such heart dilation is treated by reshaping the heart anatomy with the use of shape memory elements. Such reshaping changes the geometry of portions of the heart, particularly the right or left ventricles, to increase contractibility of the ventricles thereby increasing the stroke volume which in turn increases the cardiac output of the heart. The shape memory elements have an original shape and at least one memory shape. The elements are implanted within the heart tissue or attached externally and/or internally to a surface of the heart when in the original shape. The elements are then activated to transition from the original shape to one of the at least one memory shapes. Transitioning of the elements cause the associated heart tissue areas to readjust position, such as to decrease the width of the ventricles.
    Type: Application
    Filed: May 31, 2005
    Publication date: January 19, 2006
    Applicant: MiCardia Corporation
    Inventors: Shahram Moaddeb, Samuel Shaolian, Emanuel Shaoulian, Richard Rhee, Steven Anderson
  • Publication number: 20060015003
    Abstract: Systems, methods and devices are provided for treating heart failure patients suffering from various levels of heart dilation. Heart dilation treated by reshaping the heart anatomy with the use of magnetic forces. Such reshaping changes the geometry of portions of the heart, particularly the right or left ventricles, to increase contractibility of the ventricles thereby increasing the stroke volume which in turn increases the cardiac output of the heart. The magnetic forces are applied with the use of one or more magnetic elements which are implanted within the heart tissue or attached externally and/or internally to a surface of the heart. The various charges of the magnetic forces interact causing the associated heart tissue areas to readjust position, such as to decrease the width of the ventricles. Such repositioning is maintained over time by the force of the magnetic elements, allowing the damaging effects of heart dilation to slow in progression or reverse.
    Type: Application
    Filed: May 31, 2005
    Publication date: January 19, 2006
    Applicant: MiCardia Corporation
    Inventors: Shahram Moaddes, Samuel Shaolian, Emanuel Shaoulian, Richard Rhee, Steven Anderson
  • Publication number: 20060015178
    Abstract: Tissue shaping methods and devices are provided for reinforcing and/or remodeling heart valves. In certain embodiments, magnetic tissue shaping devices are implanted in tissue adjacent heart valve leaflets. The devices are mutually attractive or repulsive so as to remodel the heart tissue and improve heart valve function. In certain other embodiments, one or more tissue shaping devices including shape memory material are implanted in a patient's body within or on tissue adjacent a heart valve leaflet. The shape memory material can be activated within the patient in a less invasive or non-invasive manner, such as by applying energy percutaneously or external to the patient's body. The shape memory tissue shaping devices are implanted in a first configuration and then activated to remember a second configuration that displaces tissue so as to remodel the heart valve geometry and improve heart valve function.
    Type: Application
    Filed: July 14, 2005
    Publication date: January 19, 2006
    Inventors: Shahram Moaddeb, Emanuel Shaoulian, Samuel Shaolian, Michael Henson, Richard Rhee, Steven Anderson
  • Publication number: 20050288777
    Abstract: Methods and devices are provided for support of a body structure. The devices can be adjusted within the body of a patient in a minimally invasive or non-invasive manner such as by applying energy percutaneously or external to the patient's body. The energy may include, for example, acoustic energy, radio frequency energy, light energy and magnetic energy. Thus, as the body structure changes size and/or shape, the size and/or shape of the annuloplasty rings can be adjusted to provide continued reinforcement. In certain embodiments, the devices include a body member including a shape memory material. The shape memory material is configured to transform from a first shape to a second shape in response to being heated. The devices also include a thermally insulative material at least partially covering the body member and a thermally conductive material extending into the thermally insulative material. The thermally conductive material is configured to communicate thermal energy to the body member.
    Type: Application
    Filed: May 6, 2005
    Publication date: December 29, 2005
    Inventors: Richard Rhee, Emanuel Shaoulian, Shahram Moaddeb, Samuel Shaolian
  • Publication number: 20050288780
    Abstract: Methods and devices are provided for support of a body structure. The devices can be adjusted within the body of a patient in a minimally invasive or non-invasive manner such as by applying energy percutaneously or external to the patient's body. The energy may include, for example, acoustic energy, radio frequency energy, light energy and magnetic energy. Thus, as the body structure changes size and/or shape, the size and/or shape of the annuloplasty rings can be adjusted to provide continued reinforcement. In certain embodiments, the devices include an anterior portion, a posterior portion and two lateral portions corresponding to intersections of the anterior portion and the posterior portion. The devices have, a first shape in a first configuration and a second shape in a second configuration and are configured to transform from the first configuration to the second configuration in response to an activation energy applied thereto.
    Type: Application
    Filed: May 6, 2005
    Publication date: December 29, 2005
    Inventors: Richard Rhee, Emanuel Shaoulian, Shahram Moaddeb, Samuel Shaolian
  • Publication number: 20050182487
    Abstract: An annuloplasty ring having a three-dimensional discontinuous form generally arranged about an axis with two free ends that are axially offset. The ring is particularly suited for repair of the tricuspid valve, and more closely conforms to the annulus shape. The ring is more flexible in bending about radially extending axes than about the central axis. The ring may have an inner structural support covered by a pliable sleeve and/or a fabric tube. The structural support may have a varying cross-section, such as a C-shaped cross-section in a mid-section between two free ends and a rectangular cross-section at the free ends. A deliver template having a mounting ring with about the same shape as the ring facilitates implant, and may be releasably attached to a delivery handle. The deliver template may include a plurality of cutting guides for releasably attaching the annuloplasty ring thereto while presenting maximum outer surface area of the ring.
    Type: Application
    Filed: April 14, 2005
    Publication date: August 18, 2005
    Inventors: Patrick McCarthy, Richard Rhee, Stefan Schreck
  • Publication number: 20050171601
    Abstract: An annuloplasty repair segment and template for heart valve annulus repair. The elongate flexible template may form a distal part of a holder that also has a proximal handle. Alternatively, the template may be releasably attached to a mandrel that slides within a delivery sheath, the template being released from the end of the sheath to enable manipulation by a surgeon. A tether connecting the template and mandrel may also be provided. The template may be elastic, temperature responsive, or multiple linked segments. The template may be aligned with the handle and form a two- or three-dimensional curve out of alignment with the handle such that the annuloplasty repair segment attached thereto conforms to the curve. The template may be actively or passively converted between its straight and curved positions.
    Type: Application
    Filed: March 30, 2005
    Publication date: August 4, 2005
    Inventors: Delos Cosgrove, Stefan Schreck, Richard Rhee
  • Publication number: 20050049698
    Abstract: Methods of implanting an annuloplasty ring to correct maladies of the mitral annulus that not only reshapes the annulus but also reconfigures the adjacent left ventricular muscle wall. The ring may be continuous and is made of a relatively rigid material, such as Stellite. The ring has a generally oval shape that is three-dimensional at least on the posterior side. A posterior portion of the ring rises or bows upward from adjacent sides to pull the posterior aspect of the native annulus farther up than its original, healthy shape. In doing so, the ring also pulls the ventricular wall upward which helps mitigate some of the effects of congestive heart failure. Further, one or both of the posterior and anterior portions of the ring may also bow inward.
    Type: Application
    Filed: October 18, 2004
    Publication date: March 3, 2005
    Inventors: Steven Bolling, Richard Rhee