Patents by Inventor Richard T. Martorana

Richard T. Martorana has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7093370
    Abstract: An omnidirectional borehole navigation system is provided that includes a housing that can be placed within the smaller diameter drill pipes used towards the bottom of a borehole, an outer gimbal connected to the housing, and at least two or more stacked inner gimbals that are nested in and connected to the outer gimbal, the inner gimbals each having an axis parallel to one another and perpendicular to the outer gimbal. The inner gimbals contain electronic circuits, gyros whose input axes span three dimensional space, and accelerometers whose input axes span three dimensional space. There are an outer gimbal drive system, an inner gimbal drive system for maintaining the gyro input axes and the accelerometer input axes as substantially orthogonal triads, and a processor responsive to the gyro circuits and the accelerometer circuits to determine the attitude and the position of the housing in the borehole.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: August 22, 2006
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Mitchell L. Hansberry, Michael E. Ash, Richard T. Martorana
  • Patent number: 6895678
    Abstract: An omnidirectional borehole navigation system is provided which features a housing for traversing a borehole; a gimbal system including at least one outer gimbal connected to the housing and at least one inner gimbal nested in and connected to the outer gimbal; a solid state three-axis gyro assembly mounted on the inner gimbal; a solid state three-axis accelerometer assembly mounted on the inner gimbal; gyro logic circuits on the inner gimbal responsive to the three-axis gyro assembly to produce the inertial angular rate about each gyro input axis; accelerometer logic circuits on the inner gimbal to produce the non-gravitational acceleration along each accelerometer input axis; and a microprocessor responsive to the gyro logic circuits and the accelerometer logic circuits for determining the attitude and the position and velocity of the housing in its borehole.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: May 24, 2005
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Michael E. Ash, Richard T. Martorana
  • Patent number: 6778908
    Abstract: An environmentally mitigated navigation system includes a thermal isolating chamber, an inertial measurement unit that can include individual gyroscopes and accelerometers for making inertial measurements, and a temperature control system; the temperature control system includes a thermoelectric cooling system, which in a powered mode maintains the inertial measurement unit at a substantially predetermined temperature, and a phase change device for maintaining the inertial measurement unit or inertial sensors at substantially a predetermined temperature in an unpowered mode; the phase change device substantially maintains the predetermined temperature by changing phase to define a stable temperature window for the inertial measurement unit or individual sensors to make inertial measurements during the unpowered mode as well as during the powered mode.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: August 17, 2004
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Richard T. Martorana, Michael E. Ash
  • Publication number: 20030236628
    Abstract: An environmentally mitigated navigation system includes a thermal isolating chamber, an inertial measurement unit that can include individual gyroscopes and accelerometers for making inertial measurements, and a temperature control system; the temperature control system includes a thermoelectric cooling system, which in a powered mode maintains the inertial measurement unit at a substantially predetermined temperature, and a phase change device for maintaining the inertial measurement unit or inertial sensors at substantially a predetermined temperature in an unpowered mode; the phase change device substantially maintains the predetermined temperature by changing phase to define a stable temperature window for the inertial measurement unit or individual sensors to make inertial measurements during the unpowered mode as well as during the powered mode.
    Type: Application
    Filed: April 7, 2003
    Publication date: December 25, 2003
    Inventors: Richard T. Martorana, Michael E. Ash
  • Patent number: 6576880
    Abstract: A flyer assembly is adapted for launching with, transit in, and deployment from an artillery shell having a central void region extending along a ballistic shell axis. The flyer assembly includes a jettisonable shroud and a flyer. The shroud extends along a shroud axis, and is positionable within the central void region with the shroud axis substantially parallel to the shell axis. The flyer is adapted to withstand a launch acceleration force along a flyer axis when in a first state, and to effect aerodynamic flight when in a second state. When in the first state, the flyer is positionable within the shroud with the flyer axis parallel to the shroud axis and the shell axis. The flyer includes a body member disposed about the flyer axis, and a foldable wing assembly mounted to the body member. The wing assembly is configurable in a folded state characterized by a plurality of nested wing segments when the flyer is in the first state.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: June 10, 2003
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Richard T. Martorana, Jamie Anderson, Simon Mark Spearing, Seth Kessler, Brent Appleby, Edward Bergmann, Sean George, Steven Jacobson, Donald Fyler, Mark Drela, Gregory Kirkos, William McFarland, Jr.
  • Publication number: 20030089820
    Abstract: A flyer assembly is adapted for launching with, transit in, and deployment from an artillery shell having a central void region extending along a ballistic shell axis. The flyer assembly includes a jettisonable shroud and a flyer. The shroud extends along a shroud axis, and is positionable within the central void region with the shroud axis substantially parallel to the shell axis. The flyer is adapted to withstand a launch acceleration force along a flyer axis when in a first state, and to effect aerodynamic flight when in a second state. When in the first state, the flyer is positionable within the shroud with the flyer axis parallel to the shroud axis and the shell axis. The flyer includes a body member disposed about the flyer axis, and a foldable wing assembly mounted to the body member. The wing assembly is configurable in a folded state characterized by a plurality of nested wing segments when the flyer is in the first state.
    Type: Application
    Filed: May 17, 2002
    Publication date: May 15, 2003
    Inventors: Richard T. Martorana, Jamie Anderson, Simon Mark Spearing, Seth Kessler, Brent Appleby, Edward Bergmann, Sean George, Steven Jacobson, Donald Fyler, Mark Drela, Gregory Kirkos, William McFarland
  • Patent number: 6392213
    Abstract: A flyer assembly is adapted for launching with, transit in, and deployment from an artillery shell having a central void region extending along a ballistic shell axis. The flyer assembly includes a jettisonable shroud and a flyer. The shroud extends along a shroud axis, and is positionable within the central void region with the shroud axis substantially parallel to the shell axis. The flyer is adapted to withstand a launch acceleration force along a flyer axis when in a first state, and to effect aerodynamic flight when in a second state. When in the first state, the flyer is positionable within the shroud with the flyer axis parallel to the shroud axis and the shell axis. The flyer includes a body member disposed about the flyer axis, and a foldable wing assembly mounted to the body member. The wing assembly is configurable in a folded state characterized by a plurality of nested wing segments when the flyer is in the first state.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: May 21, 2002
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Richard T. Martorana, Jamie Anderson, Simon Mark Spearing, Seth Kessler, Brent Appleby, Edward Bergmann, Sean George, Steven Jacobson, Donald Fyler, Mark Drela, Gregory Kirkos, William McFarland, Jr.
  • Patent number: 5270550
    Abstract: A composite structure having predetermined temperature/time profiles is made by combining in chemically separate yet intimate thermal relation a plurality of phase change mediums which change phase at differing temperatures in the overall range of the predetermined temperature/time profiles. Each of the phase change mediums changes phase at a different temperature in sequence for defining the thermal storage capacity of the structure and generally approximating the predetermined temperature/time profiles throughout the overall temperature range.
    Type: Grant
    Filed: June 18, 1992
    Date of Patent: December 14, 1993
    Assignee: The Charles Stark Draper Laboratory
    Inventors: Richard T. Martorana, Harland E. Alpaugh, Jr., Edward S. Hickey, David R. Fairbanks, Ingrid L. Gorman, Kristie A. DePrete
  • Patent number: 5077637
    Abstract: A solid state, directional, thermal cable including a bundle of elongated, flexible, carbon fibers having a high thermal conductivity in at least the longitudinal direction. Couplings at each end of the cable, bind together the fiber bundle and thermally engage the cable with objects having different temperatures, for transferring heat between the objects. The thermal cable may be used with a frame which supports a device to or from which heat is to be transferred. The thermal cable engages with the frame at a first region proximate the device, and with a second region remote from the device for transferring heat between the first and second regions. The heat transfer frame may include a composite material whose constituents have at least two different coefficients of thermal expansion, for establishing the overall coefficient of thermal expansion of the composite material. One of the constituents may have a negative coefficient of thermal expansion, and may be a carbon based material.
    Type: Grant
    Filed: September 25, 1989
    Date of Patent: December 31, 1991
    Assignee: The Charles Stark Draper Lab., Inc.
    Inventors: Richard T. Martorana, Thomas D. Heimann, John Bimshas
  • Patent number: 4437510
    Abstract: A heat pipe is provided for transferring heat from a heat source to a heat sink. A check valve, which is operated by very low pressure, is placed in the vapor channel of a heat pipe and allows vapor to flow in a forward direction from the heat source to the heat sink. In the event that the heat sink becomes hotter than the heat source, vapor flow will reverse direction but will be blocked by the check valve.
    Type: Grant
    Filed: March 29, 1982
    Date of Patent: March 20, 1984
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Richard T. Martorana