Patents by Inventor Richard W. Baker

Richard W. Baker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130270177
    Abstract: Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.
    Type: Application
    Filed: June 12, 2013
    Publication date: October 17, 2013
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Yu Huang, Richard W. Baker, Tiem Aldajani, Jennifer Ly
  • Publication number: 20130200625
    Abstract: A process involving membrane-based gas separation and power generation, specifically for controlling carbon dioxide emissions from gas-fired power plants. The process includes a compression step, a combustion step, and an expansion/electricity generation step, as in traditional power plants. The process also includes a sweep-driven membrane separation step and a carbon dioxide removal or capture step. The carbon dioxide removal step is carried out on a portion of gas from the compression step.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 8, 2013
    Applicant: Membrane Technology and Research, Inc.
    Inventors: Xiaotong Wei, Richard W Baker, Timothy C Merkel, Brice C. Freeman
  • Patent number: 8496831
    Abstract: Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: July 30, 2013
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Yu Huang, Richard W. Baker, Tiem Aldajani, Jennifer Ly
  • Publication number: 20120272657
    Abstract: Disclosed herein is a power generation process in which a portion of the carbon dioxide generated by gaseous fuel combustion is recycled back to the power generation process, either pre-combustion, post-combustion, or both. The power generation process of the invention may be a combined cycle process or a traditional power generation process. The process utilizes sweep-based membrane separation.
    Type: Application
    Filed: July 13, 2012
    Publication date: November 1, 2012
    Applicant: Membrane Technology and Research, Inc
    Inventors: Richard W. Baker, Timothy C. Merkel, Johannes G. Wijmans
  • Patent number: 8263815
    Abstract: Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: September 11, 2012
    Assignees: Membrane Technology and Research, Inc., United States Environmental Protection Agency
    Inventors: Yu Huang, Richard W. Baker, Ramin Daniels, Tiem Aldajani, Jennifer H. Ly, Franklin R. Alvarez, Leland M. Vane
  • Patent number: 8246718
    Abstract: A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: August 21, 2012
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G. Wijmans, Richard W. Baker, Timothy C. Merkel
  • Publication number: 20120190091
    Abstract: Disclosed herein are processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.
    Type: Application
    Filed: July 26, 2011
    Publication date: July 26, 2012
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Yu Huang, Jennifer Ly, Tiem Aldajani, Richard W. Baker
  • Patent number: 8220247
    Abstract: Disclosed herein is a power generation process in which a portion of the carbon dioxide generated by gaseous fuel combustion is recycled back to the power generation process, either pre-combustion, post-combustion, or both. The power generation process of the invention may be a combined cycle process or a traditional power generation process. The process utilizes sweep-based membrane separation.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: July 17, 2012
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Johannes G. Wijmans, Timothy C. Merkel, Richard W. Baker, Xiaotong Wei
  • Patent number: 8220248
    Abstract: Disclosed herein is a power generation process in which a portion of the carbon dioxide generated by gaseous fuel combustion is recycled back to the power generation process, either pre-combustion, post-combustion, or both. The power generation process of the invention may be a combined cycle process or a traditional power generation process. The process utilizes sweep-based membrane separation.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: July 17, 2012
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G. Wijmans, Timothy C. Merkel, Richard W. Baker, Xiaotong Wei
  • Patent number: 8211679
    Abstract: Ethanol and other liquid products produced by contacting carbon monoxide (CO) and/or a mixture of CO2 (carbon dioxide) and H2 (hydrogen) with a microorganism in a bioreactor are separated using a combination of distillation and vapor permeation membranes. The bioreactor passes an effluent with an ethanol concentration of 1 to 6 wt % to a distillation column that produces an overhead vapor stream enriched in ethanol. A series of vapor permeation membranes retain ethanol as retentate and produce a 99 wt % or higher ethanol product. Ethanol depleted permeate streams flow back to the column and the bioreactor. Coupling a bioreactor with distillation and pervaporation efficiently and economically separates ethanol when present at low concentration in an aqueous fermentation broth. The separation arrangement may also include a flash zone ahead of the distillation column to raise the concentration of the ethanol in the input stream to the distillation column.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: July 3, 2012
    Assignee: Coskata, Inc.
    Inventors: Rathin Datta, Rahul Basu, Hans E. Grethlein, Richard W. Baker, Yu Huang
  • Publication number: 20120137878
    Abstract: A gas separation process for treating off-gas streams from reaction processes, and reaction processes including such gas separation. The invention involves flowing the off-gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, and passing the permeate/sweep gas mixture to the reaction. The process recovers unreacted feedstock that would otherwise be lost in the waste gases in an energy-efficient manner.
    Type: Application
    Filed: January 5, 2012
    Publication date: June 7, 2012
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Johannes G. Wijmans, Richard W. Baker, Timothy C. Merkel
  • Publication number: 20120137727
    Abstract: Disclosed herein are processes for removing water from organic solvents, such as ethanol. The processes include distillation in two columns operated at sequentially higher pressure, followed by treatment of the overhead vapor by one or two membrane separation steps.
    Type: Application
    Filed: February 9, 2012
    Publication date: June 7, 2012
    Applicants: ALGENOL BIOFUELS, INC., MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Yu Huang, Richard W. Baker, Benjamin McCool, Rong Dong
  • Patent number: 8177885
    Abstract: A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: May 15, 2012
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G. Wijmans, Timothy C. Merkel, Richard W. Baker
  • Patent number: 8128787
    Abstract: Processes for removing water from organic solvents, such as ethanol. The processes include distillation in two columns operated at sequentially higher pressure, followed by treatment of the overhead vapor by one or two membrane separation steps.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: March 6, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Nicholas P. Wynn, Yu Huang, Masakatsu Urairi, Richard W Baker
  • Patent number: 8114255
    Abstract: Processes for removing water from organic solvents, such as ethanol. The processes include distillation in two columns operated at sequentially higher pressure, followed by treatment of the overhead vapor by one or two membrane separation steps.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: February 14, 2012
    Assignee: Membrane Technology & Research, Inc.
    Inventors: Leland M Vane, Franklin R Alvarez, Yu Huang, Richard W Baker
  • Patent number: 8114192
    Abstract: A gas separation process for treating off-gas streams from reaction processes, and reaction processes including such gas separation. The invention involves flowing the off-gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, and passing the permeate/sweep gas mixture to the reaction. The process recovers unreacted feedstock that would otherwise be lost in the waste gases in an energy efficient manner.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: February 14, 2012
    Assignee: Membrane Technology & Research, Inc
    Inventors: Richard W. Baker, Johannes G. Wijmans, Timothy C. Merkel
  • Publication number: 20110262328
    Abstract: A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
    Type: Application
    Filed: September 13, 2010
    Publication date: October 27, 2011
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Johannes G. Wijmans, Richard W. Baker, Timothy C. Merkel
  • Publication number: 20110260112
    Abstract: The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.
    Type: Application
    Filed: September 13, 2010
    Publication date: October 27, 2011
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Johannes G. Wijmans, Richard W. Baker, Timothy C. Merkel
  • Patent number: 8034168
    Abstract: Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: October 11, 2011
    Assignee: Membrane Technology & Research, Inc
    Inventors: Johannes G. Wijmans, Timothy C Merkel, Richard W. Baker
  • Patent number: 8025715
    Abstract: A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to a carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: September 27, 2011
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G. Wijmans, Timothy C. Merkel, Richard W. Baker