Patents by Inventor Richard W. Cline

Richard W. Cline has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10642696
    Abstract: Methods, devices and systems to make compressed backup copies of in-use compressed database indices are described. In general, an “oldest” time at which index pages in working memory had been updated is identified. Compressed index pages may be directly copied without the need to bring them into working memory or uncompressing them. The identified “oldest” time is then associated with the compressed backup copy. In some embodiments, an entire compressed backup copy may be associated with a single point in time (e.g., the identified “oldest” time). In other embodiments, a compressed backup copy may be associated with multiple points in time (e.g., one time for each portion of the compressed index that is being backed-up). Compressed indices copied in accordance with the invention may be used during restore operations to reconstruct database indices using the identified “oldest” time and database log files.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: May 5, 2020
    Assignee: BMC Software, Inc.
    Inventors: Thomas G. Price, Richard W. Cline
  • Publication number: 20190082963
    Abstract: A fluorescence endoscopy video system includes a multimode light source for producing white light, fluorescence excitation light, or fluorescence excitation light with a reference reflectance light. An endoscope directs light to illuminate a tissue sample and collects reflected light or fluorescence light produced by the tissue. A camera includes a high sensitivity color image sensor having a plurality of pixel elements. Each of the pixel elements has an integrated filter configured to block reflected excitation light from reaching the pixel elements and allow fluorescence and reflectance light to reach the pixel elements. A processor receives image signals from the image sensor, combines image signals from a first group of pixel elements to form a first image formed by fluorescence light, and combines image signals from a second group of pixel elements to form a second image formed by reflectance light. A video monitor simultaneously superimposes the first and second images.
    Type: Application
    Filed: April 9, 2018
    Publication date: March 21, 2019
    Applicant: Novadaq Technologies ULC
    Inventors: Richard W. CLINE, John J.P. FENGLER, Joachim W. BOEHM
  • Patent number: 9968244
    Abstract: A fluorescence endoscopy video system includes a multimode light source for producing white light, fluorescence excitation light, or fluorescence excitation light with a reference reflectance light. An endoscope directs light to illuminate a tissue sample and collects reflected light or fluorescence light produced by the tissue. A camera includes a high sensitivity color image sensor having a plurality of pixel elements. Each of the pixel elements has an integrated filter configured to block reflected excitation light from reaching the pixel elements and allow fluorescence and reflectance light to reach the pixel elements. A processor receives image signals from the image sensor, combines image signals from a first group of pixel elements to form a first image formed by fluorescence light, and combines image signals from a second group of pixel elements to form a second image formed by reflectance light. A video monitor simultaneously superimposes the first and second images.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: May 15, 2018
    Assignee: NOVADAQ TECHNOLOGIES ULC
    Inventors: Richard W. Cline, John J. P. Fengler, Joachim W. Boehm
  • Publication number: 20170364410
    Abstract: Methods, devices and systems to make compressed backup copies of in-use compressed database indices are described. In general, an “oldest” time at which index pages in working memory had been updated is identified. Compressed index pages may be directly copied without the need to bring them into working memory or uncompressing them. The identified “oldest” time is then associated with the compressed backup copy. In some embodiments, an entire compressed backup copy may be associated with a single point in time (e.g., the identified “oldest” time). In other embodiments, a compressed backup copy may be associated with multiple points in time (e.g., one time for each portion of the compressed index that is being backed-up). Compressed indices copied in accordance with the invention may be used during restore operations to reconstruct database indices using the identified “oldest” time and database log files.
    Type: Application
    Filed: August 18, 2017
    Publication date: December 21, 2017
    Inventors: Thomas G. Price, Richard W. Cline
  • Publication number: 20150230698
    Abstract: A fluorescence endoscopy video system includes a multimode light source for producing white light, fluorescence excitation light, or fluorescence excitation light with a reference reflectance light. An endoscope directs light to illuminate a tissue sample and collects reflected light or fluorescence light produced by the tissue. A camera includes a high sensitivity color image sensor having a plurality of pixel elements. Each of the pixel elements has an integrated filter configured to block reflected excitation light from reaching the pixel elements and allow fluorescence and reflectance light to reach the pixel elements. A processor receives image signals from the image sensor, combines image signals from a first group of pixel elements to form a first image formed by fluorescence light, and combines image signals from a second group of pixel elements to form a second image formed by reflectance light. A video monitor simultaneously superimposes the first and second images.
    Type: Application
    Filed: February 23, 2015
    Publication date: August 20, 2015
    Inventors: Richard W. Cline, John J.P. Fengler, Joachim W. Boehm
  • Patent number: 8961403
    Abstract: A fluorescence endoscopy video system includes a multimode light source that produces light for color and fluorescence imaging modes. Light from the light source is transmitted through an endoscope to the tissue under observation. The system also includes a compact camera for color and fluorescence imaging. Images obtained through the endoscope are optically divided and projected onto one or more image sensors by a fixed beam splitter in the camera. The fixed beam splitter eliminates the need for inserting a movable mirror into the light path between the endoscope and the image sensors. Image signals from the camera are processed in the system processor/controller where a contrast enhancement function can be applied. The contrast enhancement function increases the color contrast between normal tissue and tissue suspicious for early cancer. Finally, the system also includes a calibration feature whereby the system performance can be maintained when used with different endoscopes.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: February 24, 2015
    Assignee: Novadaq Technologies Inc.
    Inventors: Richard W. Cline, John J. P. Fengler, Joachim W. Boehm
  • Patent number: 8843449
    Abstract: Methods, devices and systems to make compressed backup copies of in-use compressed database indices are described. In general, an “oldest” time at which index pages in working memory had been updated is identified. Compressed index pages may be directly copied without the need to bring them into working memory or uncompressing them. The identified “oldest” time is then associated with the compressed backup copy. In some embodiments, an entire compressed backup copy may be associated with a single point in time (e.g., the identified “oldest” time). In other embodiments, a compressed backup copy may be associated with multiple points in time (e.g., one time for each portion of the compressed index that is being backed-up). Compressed indices copied in accordance with the invention may be used during restore operations to reconstruct database indices using the identified “oldest” time and database log files.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: September 23, 2014
    Assignee: BMC Software, Inc.
    Inventors: Thomas G. Price, Richard W. Cline
  • Publication number: 20100318497
    Abstract: Unobtrusive Copies of Actively Used Compressed Indices Methods, devices and systems to make compressed backup copies of in-use compressed database indices are described. In general, an “oldest” time at which index pages in working memory had been updated is identified. Compressed index pages may be directly copied without the need to bring them into working memory or uncompressing them. The identified “oldest” time is then associated with the compressed backup copy. In some embodiments, an entire compressed backup copy may be associated with a single point in time (e.g., the identified “oldest” time). In other embodiments, a compressed backup copy may be associated with multiple points in time (e.g., one time for each portion of the compressed index that is being backed-up). Compressed indices copied in accordance with the invention may be used during restore operations to reconstruct database indices using the identified “oldest” time and database log files.
    Type: Application
    Filed: June 16, 2009
    Publication date: December 16, 2010
    Applicant: BMC Software, Inc.
    Inventors: Thomas G. Price, Richard W. Cline
  • Publication number: 20100210904
    Abstract: A fluorescence endoscopy video system includes a multimode light source that produces light for color and fluorescence imaging modes. Light from the light source is transmitted through an endoscope to the tissue under observation. The system also includes a compact camera for color and fluorescence imaging. Images obtained through the endoscope are optically divided and projected onto one or more image sensors by a fixed beam splitter in the camera. The fixed beam splitter eliminates the need for inserting a movable mirror into the light path between the endoscope and the image sensors. Image signals from the camera are processed in the system processor/controller where a contrast enhancement function can be applied. The contrast enhancement function increases the color contrast between normal tissue and tissue suspicious for early cancer. Finally, the system also includes a calibration feature whereby the system performance can be maintained when used with different endoscopes.
    Type: Application
    Filed: April 16, 2010
    Publication date: August 19, 2010
    Applicant: Novadaq Technologies Inc.
    Inventors: Richard W. Cline, John J.P. Fengler, Joachim W. Boehm
  • Publication number: 20100198010
    Abstract: A fluorescence endoscopy video system includes a multimode light source that produces light for color and fluorescence imaging modes. Light from the light source is transmitted through an endoscope to the tissue under observation. The system also includes a compact camera for color and fluorescence imaging. Images obtained through the endoscope are optically divided and projected onto one or more image sensors by a fixed beam splitter in the camera. The fixed beam splitter eliminates the need for inserting a movable mirror into the light path between the endoscope and the image sensors. Image signals from the camera are processed in the system processor/controller where a contrast enhancement function can be applied. The contrast enhancement function increases the color contrast between normal tissue and tissue suspicious for early cancer. Finally, the system also includes a calibration feature whereby the system performance can be maintained when used with different endoscopes.
    Type: Application
    Filed: April 16, 2010
    Publication date: August 5, 2010
    Applicant: Novadaq Technologies Inc.
    Inventors: Richard W. Cline, John J.P. Fengler, Joachim W. Boehm
  • Patent number: 7722534
    Abstract: A fluorescence endoscopy video system includes a multimode light source that produces light for color and fluorescence imaging modes. Light from the light source is transmitted through an endoscope to the tissue under observation. The system also includes a compact camera for color and fluorescence imaging. Images obtained through the endoscope are optically divided and projected onto one or more image sensors by a fixed beam splitter in the camera. The fixed beam splitter eliminates the need for inserting a movable mirror into the light path between the endoscope and the image sensors. Image signals from the camera are processed in the system processor/controller where a contrast enhancement function can be applied. The contrast enhancement function increases the color contrast between normal tissue and tissue suspicious for early cancer. Finally, the system also includes a calibration feature whereby the system performance can be maintained when used with different endoscopes.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: May 25, 2010
    Assignee: Novadaq Technologies, Inc.
    Inventors: Richard W Cline, John J. P. Fengler, Joachim W. Boehm
  • Publication number: 20080228037
    Abstract: A fluorescence endoscopy video system includes a multimode light source that produces light for color and fluorescence imaging modes. Light from the light source is transmitted through an endoscope to the tissue under observation. The system also includes a compact camera for color and fluorescence imaging. Images obtained through the endoscope are optically divided and projected onto one or more image sensors by a fixed beam splitter in the camera. The fixed beam splitter eliminates the need for inserting a movable mirror into the light path between the endoscope and the image sensors. Image signals from the camera are processed in the system processor/controller where a contrast enhancement function can be applied. The contrast enhancement function increases the color contrast between normal tissue and tissue suspicious for early cancer. Finally, the system also includes a calibration feature whereby the system performance can be maintained when used with different endoscopes.
    Type: Application
    Filed: January 7, 2008
    Publication date: September 18, 2008
    Applicant: Novadaq Technologies Inc.
    Inventors: Richard W. Cline, John J.P. Fengler, Joachim W. Boehm
  • Publication number: 20080177140
    Abstract: A system for generating multi-wavelength fluorescence and reflectance images includes a single multi-mode light source for producing both multi-wavelength excitation light for fluorescence imaging and illumination light having red, green and blue components, light source filters positioned stationarily during an imaging mode and transmitting substantially all the multi-wavelength excitation light intensity and selectively transmitting a predetermined portion of one or more of the red, green and blue component intensity. A camera receiving light collected from a tissue sample includes two color image sensors, with spectral filters positioned in front of the color image sensors. The corresponding filters block excitation light and transmit at the first color image sensor reflectance light at wavelengths other than the excitation light, and transmit at the second color image sensor multi-wavelength fluorescence light at wavelengths other than the multi-wavelength excitation light.
    Type: Application
    Filed: January 23, 2007
    Publication date: July 24, 2008
    Applicant: Xillix Technologies Corp.
    Inventors: Richard W. Cline, John J.P. Fengler
  • Patent number: 7341557
    Abstract: A fluorescence endoscopy video system includes a multimode light source that produces light for color and fluorescence imaging modes. Light from the light source is transmitted through an endoscope to the tissue under observation. The system also includes a compact camera for color and fluorescence imaging. Images obtained through the endoscope are optically divided and projected onto one or more image sensors by a fixed beam splitter in the camera. The fixed beam splitter eliminates the need for inserting a movable mirror into the light path between the endoscope and the image sensors. Image signals from the camera are processed in the system processor/controller where a contrast enhancement function can be applied. The contrast enhancement function increases the color contrast between normal tissue and tissue suspicious for early cancer. Finally, the system also includes a calibration feature whereby the system performance can be maintained when used with different endoscopes.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: March 11, 2008
    Assignee: Novadaq Technologies Inc.
    Inventors: Richard W. Cline, John J. P. Fengler, Joachim W. Boehm
  • Patent number: 6899675
    Abstract: A fluorescence endoscopy video system includes a multi-mode light source that produces light for white light and fluorescence imaging modes. Light from the light source is transmitted through an endoscope to the tissue under observation. The system also includes a compact camera for white light and fluorescence imaging, which may be located in the insertion portion of the endoscope, or attached to the portion of the endoscope outside the body. The camera can be utilized for both white light imaging and fluorescence imaging, and in its most compact form, contains no moving parts.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: May 31, 2005
    Assignee: Xillix Technologies Corp.
    Inventors: Richard W. Cline, John J. P. Fengler
  • Patent number: 6821245
    Abstract: A fluorescence endoscopy video system includes a multimode light source that produces light for color and fluorescence imaging modes. Light from the light source is transmitted through an endoscope to the tissue under observation. The system also includes a compact camera for color and fluorescence imaging. Images obtained through the endoscope are optically divided and projected onto one or more image sensors by a fixed beam splitter in the camera. The fixed beam splitter eliminates the need for inserting a movable mirror into the light path between the endoscope and the image sensors. Image signals from the camera are processed in the system processor/controller where a contrast enhancement function can be applied. The contrast enhancement function increases the color contrast between normal tissue and tissue suspicious for early cancer. Finally, the system also includes a calibration feature whereby the system performance can be maintained when used with different endoscopes.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: November 23, 2004
    Assignee: Xillix Technologies Corporation
    Inventors: Richard W. Cline, John J. P. Fengler, Joachim W. Boehm
  • Publication number: 20040196463
    Abstract: A lightweight hand-held skin abnormality detection system includes a source of excitation light that causes tissue under examination to produce fluorescence light. The fluorescence light produced along with the beam of reference light is provided to a beam splitter which divides the fluorescence light and the reference light into separate optical channels. Each optical channel produces an image of the tissue under examination. A passive optical combiner superimposes the image produced by each optical channel for viewing by a user.
    Type: Application
    Filed: April 22, 2004
    Publication date: October 7, 2004
    Applicant: Xillix Technologies Corporation
    Inventors: Richard W. Cline, Pierre Leduc
  • Publication number: 20030206301
    Abstract: A lightweight hand-held skin abnormality detection system includes a source of excitation light that causes tissue under examination to produce fluorescence light. The fluorescence light produced along with the beam of reference light is provided to a beam splitter which divides the fluorescence light and the reference light into separate optical channels. Each optical channel produces an image of the tissue under examination. A passive optical combiner superimposes the image produced by each optical channel for viewing by a user.
    Type: Application
    Filed: May 14, 2003
    Publication date: November 6, 2003
    Applicant: Xillix Technologies Corporation
    Inventors: Richard W. Cline, Pierre Leduc
  • Patent number: 6603552
    Abstract: A lightweight hand-held skin abnormality detection system includes a source of excitation light that causes tissue under examination to produce fluorescence light. The fluorescence light produced along with the beam of reference light is provided to a beam splitter which divides the fluorescence light and the reference light into separate optical channels. Each optical channel produces an image of the tissue under examination. A passive optical combiner superimposes the image produced by each optical channel for viewing by a user.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: August 5, 2003
    Assignee: Xillix Technologies Corp.
    Inventors: Richard W. Cline, Pierre Leduc
  • Publication number: 20030135092
    Abstract: A fluorescence endoscopy video system includes a multi-mode light source that produces light for white light and fluorescence imaging modes. Light from the light source is transmitted through an endoscope to the tissue under observation. The system also includes a compact camera for white light and fluorescence imaging, which may be located in the insertion portion of the endoscope, or attached to the portion of the endoscope outside the body. The camera can be utilized for both white light imaging and fluorescence imaging, and in its most compact form, contains no moving parts.
    Type: Application
    Filed: January 15, 2002
    Publication date: July 17, 2003
    Applicant: Xillix Technologies Corporation
    Inventors: Richard W. Cline, John J.P. Fengler