Patents by Inventor Rio J. Vetter

Rio J. Vetter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11690548
    Abstract: An implantable device for body tissue, including an electrical subsystem that flexes within and interfaces with body tissue and a carrier that operates in the following two modes: provides structural support for the electrical subsystem during implantation of the device in body tissue and allows flexing of the electrical subsystem after implantation of the device in body tissue. The implantable device is preferably designed to be implanted into the brain, spinal cord, peripheral nerve, muscle, or any other suitable anatomical location. The implantable device, however, may be alternatively used in any suitable environment and for any suitable reason.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: July 4, 2023
    Assignee: NeuroNexus Technologies, Inc.
    Inventors: Jamille Farraye Hetke, Daryl R. Kipke, Rio J. Vetter
  • Patent number: 11602630
    Abstract: A medical electrode array system comprising a thin-film substrate, a plurality of electrode contacts disposed on the thin-film substrate, and a plurality of traces. The plurality of electrode contacts is configured to provide electrical contact points. The plurality of traces is electrically connected to the plurality of electrode contacts. A electrode contact of the plurality of electrode contacts has a dedicated trace of the plurality of traces that provides electrical connectivity to the electrode contact. The thin-film substrate is configured to flex to maintain continuous contact with contours of patient anatomy. The plurality of traces includes flexible spring-like portions to add flexibility to the thin-film substrate.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: March 14, 2023
    Assignee: NeuroNexus Technologies, Inc.
    Inventors: Rio J. Vetter, Peter Gerow, David S. Pellinen, Carlos Rackham, Daryl R. Kipke, Jamille F. Hetke
  • Patent number: 11547849
    Abstract: Systems and methods for ruggedized neural probes are provided. Such probes may be adapted for penetrating tissue. An exemplary ruggedized penetrating electrode array system includes an elongate shank having one or more electrodes disposed on at least one exterior surface thereof and a backend structure. A proximal end of the elongate shank is secured to the backend structure. The exemplary array system further includes an elongate carrier secured to the backend structure and extending away from the backend structure toward the distal end of the elongate shank, the elongate carrier being more rigid than the elongate shank. Methods for fabricating such an array system are also provided.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: January 10, 2023
    Assignee: NeuroNexus Technologies, Inc.
    Inventors: Jamille Farraye Hetke, Rio J. Vetter, Carlos Rackham, Daryl R. Kipke
  • Patent number: 11324945
    Abstract: The neural interface system of the preferred embodiments includes an electrode array having a plurality of electrode sites and a carrier that supports the electrode array. The electrode array is coupled to the carrier such that the electrode sites are arranged both circumferentially around the carrier and axially along the carrier. A group of the electrode sites may be simultaneously activated to create an activation pattern. The system of the preferred embodiment is preferably designed for deep brain stimulation, and, more specifically, for deep brain stimulation with fine electrode site positioning, selectivity, tunability, and precise activation patterning. The system of the preferred embodiments, however, may be alternatively used in any suitable environment (such as the spinal cord, peripheral nerve, muscle, or any other suitable anatomical location) and for any suitable reason.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: May 10, 2022
    Assignee: Medtronic Bakken Research Center B.V.
    Inventors: Rio J. Vetter, Daryl R. Kipke, David Pellinen, David J. Anderson, Jamille Farraye Hetke
  • Patent number: 10946187
    Abstract: A three-dimensional neural probe electrode array system is described. Planar probes are microfabricated and electrically connected to flexible micro-machined ribbon cables using a rivet bonding technique. The distal end of each cable is connected to a probe with the proximal end of the cable being customized for connection to a printed circuit board. Final assembly consists of combining multiple such assemblies into a single structure. Each of the two-dimensional neural probe arrays is positioned into a micro-machined platform that provides mechanical support and alignment for each array. Lastly, a micro-machined cap is placed on top of each neural electrode probe and cable assembly to protect them from damage during shipping and subsequent use. The cap provides a relatively planar surface for attachment of a computer controlled inserter for precise insertion into the tissue.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: March 16, 2021
    Assignee: NEURONEXUS TECHNOLOGIES, INC.
    Inventors: Rio J. Vetter, Jamille Farraye Hetke, David S. Pellinen, Bencharong Suwarato, K C Kong
  • Patent number: 10842991
    Abstract: A neural probe comprising an array of stimulation and/or recording electrodes supported on a tape spring-type carrier is described. The neural probe comprising the tape spring-type carrier is used to insert flexible electrode arrays straight into tissue, or to insert them off-axis from the initial penetration of a guide tube. Importantly, the neural probe is not rigid, but has a degree of stiffness provided by the tape spring-type carrier that maintains a desired trajectory into body tissue, but will subsequently allow the probe to flex and move in unison with movement of the body tissue.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: November 24, 2020
    Assignee: NEURONEXUS TECHNOLOGIES, INC.
    Inventors: David S. Pellinen, Bencharong Suwarato, Rio J. Vetter, Jamille Farraye Hetke, Daryl R. Kipke
  • Patent number: 10688298
    Abstract: An implantable electrode system of is disclosed that includes a conductive electrode layer, an interconnect coupled to the electrode layer, an insulator that insulates the interconnect, and an anchor that more securely fixes the electrode layer in place. This structure is particularly useful with the electrode layer being a neural interface that is configured to provide either a recording or stimulating function. A method for forming such an implantable electrode system includes forming an interconnect over a base layer, forming an anchoring structure over the base layer, depositing an insulating material layer over the interconnect structure and over the anchoring structure, exposing a portion of the interconnect structure, forming an electrode layer over the insulating layer, the electrode layer contacting the exposed portion of the interconnect structure.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: June 23, 2020
    Assignee: NEURONEXUS TECHNOLOGIES, INC.
    Inventors: David S. Pellinen, Mayurachat Ning Gulari, Jamille Farraye Hetke, David J. Anderson, Daryl R. Kipke, Rio J. Vetter
  • Publication number: 20190374770
    Abstract: The neural interface system of one embodiment includes a cylindrical shaft, a lateral extension longitudinally coupled to at least a portion of the shaft and having a thickness less than a diameter of the shaft, and an electrode array arranged on the lateral extension and radially offset from the shaft, including electrode sites that electrically interface with their surroundings. The method of one embodiment for making the neural interface system includes forming a planar polymer substrate with at least one metallization layer, patterning on at least one metallization layer an electrode array on a first end of the substrate, patterning conductive traces on at least one metallization layer, rolling a portion of the substrate toward the first end of the substrate, and securing the rolled substrate into a shaft having the first end of the substrate laterally extending from the shaft and the electrode array radially offset from the shaft.
    Type: Application
    Filed: April 5, 2019
    Publication date: December 12, 2019
    Inventors: John P. Seymour, Jamille Farraye Hetke, Rio J. Vetter, Daryl R. Kipke, David S. Pellinen, KC Kong
  • Patent number: 10493297
    Abstract: An implantable optical electrode having a thin film electrode array including a plurality of electrodes, a light source associated with the thin film electrode array, and a passive bioactive agent delivery module associated with the thin film electrode array. Also disclosed are methods of manufacturing the array and a neural interface system with passive fluid delivery.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: December 3, 2019
    Assignee: NeuroNexus Technologies, Inc.
    Inventors: John P. Seymour, KC Kong, Rio J. Vetter
  • Publication number: 20190336750
    Abstract: The neural interface system of the preferred embodiments includes an electrode array having a plurality of electrode sites and a carrier that supports the electrode array. The electrode array is coupled to the carrier such that the electrode sites are arranged both circumferentially around the carrier and axially along the carrier. A group of the electrode sites may be simultaneously activated to create an activation pattern. The system of the preferred embodiment is preferably designed for deep brain stimulation, and, more specifically, for deep brain stimulation with fine electrode site positioning, selectivity, tunability, and precise activation patterning. The system of the preferred embodiments, however, may be alternatively used in any suitable environment (such as the spinal cord, peripheral nerve, muscle, or any other suitable anatomical location) and for any suitable reason.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Rio J. Vetter, Daryl R. Kipke, David Pellinen, David J. Anderson, Jamille Farraye Hetke
  • Publication number: 20190298993
    Abstract: A neural probe comprising an array of stimulation and/or recording electrodes supported on a tape spring-type carrier is described. The neural probe comprising the tape spring-type carrier is used to insert flexible electrode arrays straight into tissue, or to insert them off-axis from the initial penetration of a guide tube. Importantly, the neural probe is not rigid, but has a degree of stiffness provided by the tape spring-type carrier that maintains a desired trajectory into body tissue, but will subsequently allow the probe to flex and move in unison with movement of the body tissue.
    Type: Application
    Filed: January 7, 2019
    Publication date: October 3, 2019
    Inventors: David S. Pellinen, Bencharong Suwarato, Rio J. Vetter, Jamille Farraye Hetke, Daryl R. Kipke
  • Patent number: 10357649
    Abstract: The neural interface system of the preferred embodiments includes an electrode array having a plurality of electrode sites and a carrier that supports the electrode array. The electrode array is coupled to the carrier such that the electrode sites are arranged both circumferentially around the carrier and axially along the carrier. A group of the electrode sites may be simultaneously activated to create an activation pattern. The system of the preferred embodiment is preferably designed for deep brain stimulation, and, more specifically, for deep brain stimulation with fine electrode site positioning, selectivity, tunability, and precise activation patterning. The system of the preferred embodiments, however, may be alternatively used in any suitable environment (such as the spinal cord, peripheral nerve, muscle, or any other suitable anatomical location) and for any suitable reason.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: July 23, 2019
    Assignee: Medtronic Bakken Research Center B.V.
    Inventors: Rio J. Vetter, Daryl R. Kipke, David Pellinen, David J. Anderson, Jamille Farraye Hetke
  • Patent number: 10252047
    Abstract: The neural interface system of one embodiment includes a cylindrical shaft, a lateral extension longitudinally coupled to at least a portion of the shaft and having a thickness less than a diameter of the shaft, and an electrode array arranged on the lateral extension and radially offset from the shaft, including electrode sites that electrically interface with their surroundings. The method of one embodiment for making the neural interface system includes forming a planar polymer substrate with at least one metallization layer, patterning on at least one metallization layer an electrode array on a first end of the substrate, patterning conductive traces on at least one metallization layer, rolling a portion of the substrate toward the first end of the substrate, and securing the rolled substrate into a shaft having the first end of the substrate laterally extending from the shaft and the electrode array radially offset from the shaft.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: April 9, 2019
    Assignee: NEURONEXUS TECHNOLOGIES, INC.
    Inventors: John P. Seymour, Jamille Farraye Hetke, Rio J. Vetter, Daryl R. Kipke, David S. Pellinen, Kc Kong
  • Publication number: 20190054293
    Abstract: A neural probe system having a single guide tube that is inserted into neural tissue and from which a number of neural probes can be deployed is described. Each probe is deployable into tissue along a desired trajectory. This is done by supporting the electrode array on a spring tape-type carrier that maintains axial stiffness once the neural probe has deployed out a channel in the guide tube. That way, a target neural tissue is bounded by an increased number of neural probes while minimizing trauma to surrounding body tissue.
    Type: Application
    Filed: October 19, 2018
    Publication date: February 21, 2019
    Inventors: David S. Pellinen, Bencharong Suwarato, Rio J. Vetter, Jamille Farraye Hetke, Daryl R. Kipke
  • Publication number: 20190021618
    Abstract: An implantable device for body tissue, including an electrical subsystem that flexes within and interfaces with body tissue and a carrier that operates in the following two modes: provides structural support for the electrical subsystem during implantation of the device in body tissue and allows flexing of the electrical subsystem after implantation of the device in body tissue. The implantable device is preferably designed to be implanted into the brain, spinal cord, peripheral nerve, muscle, or any other suitable anatomical location. The implantable device, however, may be alternatively used in any suitable environment and for any suitable reason.
    Type: Application
    Filed: July 30, 2018
    Publication date: January 24, 2019
    Inventors: Jamille Farraye Hetke, Daryl R. Kipke, Rio J. Vetter
  • Patent number: 10173051
    Abstract: A neural probe comprising an array of stimulation and/or recording electrodes supported on a tape spring-type carrier is described. The neural probe comprising the tape spring-type carrier is used to insert flexible electrode arrays straight into tissue, or to insert them off-axis from the initial penetration of a guide tube. Importantly, the neural probe is not rigid, but has a degree of stiffness provided by the tape spring-type carrier that maintains a desired trajectory into body tissue, but will subsequently allow the probe to flex and move in unison with movement of the body tissue.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: January 8, 2019
    Assignee: NEURONEXUS TECHNOLOGIES, INC.
    Inventors: David S. Pellinen, Bencharong Suwarato, Rio J. Vetter, Jamille Farraye Hetke, Daryl R. Kipke
  • Publication number: 20180353750
    Abstract: Systems and methods for ruggedized neural probes are provided. Such probes may be adapted for penetrating tissue. An exemplary ruggedized penetrating electrode array system includes an elongate shank having one or more electrodes disposed on at least one exterior surface thereof and a backend structure. A proximal end of the elongate shank is secured to the backend structure. The exemplary array system further includes an elongate carrier secured to the backend structure and extending away from the backend structure toward the distal end of the elongate shank, the elongate carrier being more rigid than the elongate shank. Methods for fabricating such an array system are also provided.
    Type: Application
    Filed: June 6, 2018
    Publication date: December 13, 2018
    Inventors: Jamille F. Hetke, Rio J. Vetter, Carlos Rackham, Daryl R. Kipke
  • Publication number: 20180353753
    Abstract: A medical electrode array system comprising a thin-film substrate, a plurality of electrode contacts disposed on the thin-film substrate, and a plurality of traces. The plurality of electrode contacts is configured to provide electrical contact points. The plurality of traces is electrically connected to the plurality of electrode contacts. A electrode contact of the plurality of electrode contacts has a dedicated trace of the plurality of traces that provides electrical connectivity to the electrode contact. The thin-film substrate is configured to flex to maintain continuous contact with contours of patient anatomy. The plurality of traces includes flexible spring-like portions to add flexibility to the thin-film substrate.
    Type: Application
    Filed: June 7, 2018
    Publication date: December 13, 2018
    Inventors: Rio J. Vetter, Peter Gerow, David S. Pellinen, Carlos Rackham, Daryl R. Kipke, Jamille F. Hetke
  • Publication number: 20180345010
    Abstract: A neural probe comprising an array of stimulation and/or recording electrodes supported on a tape spring-type carrier is described. The neural probe comprising the tape spring-type carrier is used to insert flexible electrode arrays straight into tissue, or to insert them off-axis from the initial penetration of a guide tube. Importantly, the neural probe is not rigid, but has a degree of stiffness provided by the tape spring-type carrier that maintains a desired trajectory into body tissue, but will subsequently allow the probe to flex and move in unison with movement of the body tissue.
    Type: Application
    Filed: October 21, 2014
    Publication date: December 6, 2018
    Inventors: David S. Pellinen, Bencharong Suwarato, Rio J. Vetter, Jamille Farraye Hetke, Daryl R. Kipke
  • Publication number: 20180345008
    Abstract: A three-dimensional neural probe electrode array system is described. Planar probes are microfabricated and electrically connected to flexible micro-machined ribbon cables using a rivet bonding technique. The distal end of each cable is connected to a probe with the proximal end of the cable being customized for connection to a printed circuit board. Final assembly consists of combining multiple such assemblies into a single structure. Each of the two-dimensional neural probe arrays is positioned into a micro-machined platform that provides mechanical support and alignment for each array. Lastly, a micro-machined cap is placed on top of each neural electrode probe and cable assembly to protect them from damage during shipping and subsequent use. The cap provides a relatively planar surface for attachment of a computer controlled inserter for precise insertion into the tissue.
    Type: Application
    Filed: December 18, 2017
    Publication date: December 6, 2018
    Inventors: Rio J. Vetter, Jamille Farraye Hetke, David S. Pellinen, Bencharong Suwarato, KC Kong