Patents by Inventor Risako Ueno

Risako Ueno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9257470
    Abstract: According to one embodiment, an imaging lens includes a first optical system and a microlens array. The first optical system includes an optical axis. The microlens array is provided between the first optical system and an imaging element. The microlens array includes microlens units provided in a first plane. The imaging element includes pixel groups. Each of the pixel groups includes pixels. The microlens units respectively overlap the pixel groups when projected onto the first plane. The first optical system includes an aperture stop, and first, second, and third lenses. The first lens is provided between the aperture stop and the microlens array, and has a positive refractive power. The second lens is provided between the first lens and the microlens array, and has a negative refractive power. The third lens is provided between the second lens and the microlens array, and has a positive refractive power.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: February 9, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Risako Ueno, Hiroto Honda, Mitsuyoshi Kobayashi, Kazuhiro Suzuki, Honam Kwon, Hideyuki Funaki
  • Patent number: 9207365
    Abstract: According to one embodiment, an imaging lens includes a first optical system and a microlens array. The first optical system includes an optical axis. The microlens array is provided between the first optical system and an imaging element. The microlens array includes microlens units provided in a first plane. The imaging element includes pixel groups. Each of the pixel groups includes pixels. The microlens units respectively overlap the pixel groups when projected onto the first plane. The first optical system includes an aperture stop, a first lens, a second lens, a third lens, and a fourth lens. The first lens is provided between the aperture stop and the microlens array. The second lens is provided between the first lens and the microlens array. The third lens is provided between the second lens and the microlens array. The fourth lens is provided between the third lens and the microlens array.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: December 8, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Risako Ueno, Hiroto Honda, Mitsuyoshi Kobayashi, Kazuhiro Suzuki, Honam Kwon, Hideyuki Funaki
  • Publication number: 20150324992
    Abstract: A solid-state imaging device according to an embodiment includes: an imaging element formed on a semiconductor substrate, and comprising an imaging region including a plurality of pixel blocks each including a plurality of pixels; a first optical system forming an image of an object on an imaging plane; and a second optical system comprising a microlens array including a plurality of microlenses each corresponding to one of the pixel blocks, and reducing and re-forming the image to be formed on the imaging plane on the pixel blocks corresponding to the respective microlenses. The imaging plane of the first optical system is located further away from the first optical system than the imaging element when the object is located at an infinite distance.
    Type: Application
    Filed: May 29, 2015
    Publication date: November 12, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Risako UENO, Hideyuki FUNAKI, Mitsuyoshi KOBAYASHI
  • Publication number: 20150304579
    Abstract: A solid-state imaging device according to an embodiment includes: an imaging element including an imaging area formed with a plurality of pixel blocks each including pixels; a first optical system forming an image of an object on an imaging surface; and a second optical system re-forming the image, which has been formed on the imaging surface, on the pixel blocks corresponding to microlenses, the second optical system including a microlens array formed with the microlenses provided in accordance with the pixel blocks. The microlenses are arranged in such a manner that an angle ? between a straight line connecting center points of adjacent microlenses and one of a row direction and a column direction in which the pixels are aligned is expressed as follows: ?>sin?1(2dp/Dml), where Dml represents microlens pitch, and dp represents pixel pitch.
    Type: Application
    Filed: May 18, 2015
    Publication date: October 22, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiroto HONDA, Kazuhiro SUZUKI, Mitsuyoshi KOBAYASHI, Risako UENO, Honam KWON, Hideyuki FUNAKI
  • Publication number: 20150268385
    Abstract: According to an embodiment, an image processing method is implemented in an imaging device that includes a microlens array including microlenses, a main lens configured to guide light from a photographic subject to the microlens array, and an image sensor configured to receive the light after passing through the main lens and the microlens array. The method includes: obtaining an image captured by the image sensor; setting, according to an image height, an arrangement of a microlens image of interest and comparison-target microlens images from among microlens images that are included in the image and that are formed by the microlenses; detecting an amount of image shift between the microlens image of interest and each of the comparison-target microlens images by comparing the microlens image of interest with the comparison-target microlens images; and calculating a distance corresponding to the microlens image of interest using the amounts of image shift.
    Type: Application
    Filed: March 16, 2015
    Publication date: September 24, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Mitsuyoshi KOBAYASHI, Risako UENO, Kazuhiro SUZUKI, Honam KWON, Hideyuki FUNAKI
  • Publication number: 20150268392
    Abstract: According to an embodiment, a filter-array-equipped microlens includes a filter array and a microlens array. The filter array includes a plurality of first optical filters for selectively transmitting light of an infrared region and a plurality of second optical filters for selectively transmitting light of a first visible wavelength region. The microlens array includes a plurality of microlenses each corresponding to any one of the first optical filters and the second optical filters.
    Type: Application
    Filed: March 12, 2015
    Publication date: September 24, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Mitsuyoshi KOBAYASHI, Risako UENO, Kazuhiro SUZUKI, Honam KWON, Hideyuki FUNAKI
  • Publication number: 20150268450
    Abstract: According to an embodiment, an imaging system includes an image sensor, an imaging lens, a microlens array, an irradiator, a distance information acquiring unit, and a controller. The microlens array includes multiple microlenses arranged with a predetermined pitch, the microlenses being respectively associated with pixel blocks. The irradiator emits light to project a pattern onto an object. The distance information acquiring unit acquires information on the distance in the depth direction to the object on the basis of a signal resulting from photoelectric conversion performed by the image sensor. The controller controls the irradiator so that images contained in a pattern that is reflected by the object and scaled down on the image sensor by the imaging lens and the microlenses are smaller than the arrangement pitch of images each formed on the image sensor by each microlens and larger than twice the pixel.
    Type: Application
    Filed: March 6, 2015
    Publication date: September 24, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Risako Ueno, Kazuhiro Suzuki, Mitsuyoshi Kobayashi, Honam Kwon, Hideyuki Funaki
  • Patent number: 9136290
    Abstract: According to one embodiment, a solid state imaging device includes a sensor substrate having a plurality of pixels formed on an upper face, a microlens array substrate having a plurality of microlenses formed and a connection post with one end bonded to a region between the microlenses on the microlens array substrate and with the other end bonded to the upper face.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: September 15, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuhiro Suzuki, Risako Ueno, Honam Kwon, Mitsuyoshi Kobayashi, Hideyuki Funaki
  • Publication number: 20150226863
    Abstract: A radiation detection apparatus according to an embodiment includes: a scintillator; a photon detection device array including a plurality of cells each being a photon detection device with an avalanche photodiode configured to detect visible radiation photons emitted from the scintillator and a resistor disposed along a part of a periphery of an active region of the avalanche photodiode; and a reflector configured to reflect a visible radiation photon and disposed in a region that does not include the active regions and the resistors of the cells, on a face including the active regions.
    Type: Application
    Filed: April 23, 2015
    Publication date: August 13, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Go KAWATA, Hideyuki Funaki, Honam Kwon, Risako Ueno, Kazuhiro Suzuki
  • Patent number: 9094594
    Abstract: According to an embodiment, a solid-state imaging device includes: an imaging device including an imaging area including a plurality of pixel blocks each of which includes a plurality of pixels; an image formation lens forming an image on an image formation plane by using light from a subject; an aperture unit including a plurality of aperture elements provided to associate with the plurality of pixel blocks, each of the aperture elements having an aperture portion and a shield portion, light from the image formation lens being filtered by each aperture element; a microlens array including a plurality of microlenses provided to associate with the plurality of aperture elements, each of the microlenses forming an image in the imaging area by using light filtered by an associated aperture element; and a signal processing circuit configured to process a signal of an image taken in the imaging area and estimates a distance to the subject.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: July 28, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuyoshi Kobayashi, Hideyuki Funaki, Risako Ueno
  • Patent number: 9064766
    Abstract: A solid-state imaging device according to an embodiment includes: an imaging element including an imaging area formed with a plurality of pixel blocks each including pixels; a first optical system forming an image of an object on an imaging surface; and a second optical system re-forming the image, which has been formed on the imaging surface, on the pixel blocks corresponding to microlenses, the second optical system including a microlens array formed with the microlenses provided in accordance with the pixel blocks. The microlenses are arranged in such a manner that an angle ? between a straight line connecting center points of adjacent microlenses and one of a row direction and a column direction in which the pixels are aligned is expressed as follows: ?>sin?1(2dp/Dml), where Dml represents microlens pitch, and dp represents pixel pitch.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: June 23, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroto Honda, Kazuhiro Suzuki, Mitsuyoshi Kobayashi, Risako Ueno, Honam Kwon, Hideyuki Funaki
  • Patent number: 9060140
    Abstract: A microlens array unit according to an embodiment includes: a substrate; a first group of microlenses including first microlenses having a convex shape and a first focal length, the first group of microlenses being arranged on the substrate; and a second group of microlenses including second microlenses having a convex shape and a second focal length different from the first focal length, the second group of microlenses being arranged on the substrate, a first imaging plane of the first group of microlenses and a second imaging plane of the second group of microlenses being parallel to each other, a distance between the first and second imaging planes in a direction perpendicular to the first imaging plane being 20% or less of the first focal length, and images of the first microlenses projected on the substrate not overlapping images of the second microlenses projected on the substrate.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: June 16, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Mitsuyoshi Kobayashi, Risako Ueno, Kazuhiro Suzuki, Hiroto Honda, Honam Kwon, Hideyuki Funaki
  • Patent number: 9048157
    Abstract: A solid-state imaging device according to an embodiment includes: an imaging element formed on a semiconductor substrate, and comprising an imaging region including a plurality of pixel blocks each including a plurality of pixels; a first optical system forming an image of an object on an imaging plane; and a second optical system comprising a microlens array including a plurality of microlenses each corresponding to one of the pixel blocks, and reducing and re-forming the image to be formed on the imaging plane on the pixel blocks corresponding to the respective microlenses. The imaging plane of the first optical system is located further away from the first optical system than the imaging element when the object is located at an infinite distance.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: June 2, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Risako Ueno, Hideyuki Funaki, Mitsuyoshi Kobayashi
  • Patent number: 9040927
    Abstract: A radiation detection apparatus according to an embodiment includes: a scintillator including a fluorescent material to convert radiation to visible radiation photon; a photon detection device array having a plurality of cells each of which includes a photon detection device to detect visible radiation photon emitted from a fluorescent material in the scintillator and convert the visible radiation photon to an electric signal; and a plurality of lenses provided on cells respectively in association with the cells to cause the visible radiation photon to be incident on the photon detection device in an associated cell.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 26, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Go Kawata, Hideyuki Funaki, Honam Kwon, Risako Ueno, Kazuhiro Suzuki
  • Publication number: 20150077622
    Abstract: According to one embodiment, an imaging lens includes a first optical system and a microlens array. The first optical system includes an optical axis. The microlens array is provided between the first optical system and an imaging element. The microlens array includes microlens units provided in a first plane. The imaging element includes pixel groups. Each of the pixel groups includes pixels. The microlens units respectively overlap the pixel groups when projected onto the first plane. The first optical system includes an aperture stop, a first lens, a second lens, a third lens, and a fourth lens. The first lens is provided between the aperture stop and the microlens array. The second lens is provided between the first lens and the microlens array. The third lens is provided between the second lens and the microlens array. The fourth lens is provided between the third lens and the microlens array.
    Type: Application
    Filed: August 15, 2014
    Publication date: March 19, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Risako UENO, Hiroto HONDA, Mitsuyoshi KOBAYASHI, Kazuhiro SUZUKI, Honam KWON, Hideyuki FUNAKI
  • Publication number: 20150077522
    Abstract: According to one embodiment, a solid state imaging device includes a first imaging device, a second imaging device, and a calculating unit. The first imaging device includes a first optical system, a first imaging unit, and a second optical system provided between the first optical system and the first imaging unit. The second imaging device includes a third optical system, a second imaging unit, and a fourth optical system provided between the third optical system and the second imaging unit. The calculating unit is configured to perform a first calculation and a second calculation. The first calculation includes deriving a first distance from stereo disparity. The second calculation includes deriving a second distance from a parallax image. The calculating unit is configured to estimate a target distance based on at least one selected from the first distance and the second distance.
    Type: Application
    Filed: August 5, 2014
    Publication date: March 19, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kazuhiro SUZUKI, Risako UENO, Mitsuyoshi KOBAYASHI, Honam KWON, Hideyuki FUNAKI
  • Publication number: 20150077618
    Abstract: According to one embodiment, an imaging lens includes a first optical system and a microlens array. The first optical system includes an optical axis. The microlens array is provided between the first optical system and an imaging element. The microlens array includes microlens units provided in a first plane. The imaging element includes pixel groups. Each of the pixel groups includes pixels. The microlens units respectively overlap the pixel groups when projected onto the first plane. The first optical system includes an aperture stop, and first, second, and third lenses. The first lens is provided between the aperture stop and the microlens array, and has a positive refractive power. The second lens is provided between the first lens and the microlens array, and has a negative refractive power. The third lens is provided between the second lens and the microlens array, and has a positive refractive power.
    Type: Application
    Filed: August 15, 2014
    Publication date: March 19, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Risako UENO, Hiroto HONDA, Mitsuyoshi KOBAYASHI, Kazuhiro SUZUKI, Honam KWON, Hideyuki FUNAKI
  • Publication number: 20150077585
    Abstract: According to an embodiment, a microlens array for a solid-state image sensing device includes a plurality of microlenses and a state detector. The plurality of microlenses are disposed in an imaging microlens area and is configured to form two-dimensional images. The state detector is disposed on a periphery of the imaging microlens area and is configured to, on an image forming surface of the microlenses, generate images having a smaller diameter than images formed by the microlenses.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 19, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Mitsuyoshi KOBAYASHI, Risako UENO, Kazuhiro SUZUKI, Hiroto HONDA, Honam KWON, Hideyuki FUNAKI
  • Publication number: 20150077600
    Abstract: According to an embodiment, a color filter array includes a plurality of color filters of multiple colors. The color filters are arranged so that each of the color filter of each color corresponds to any one of a plurality of microlenses included in a microlens array. Each microlens is configured to irradiate a plurality of pixels with light.
    Type: Application
    Filed: September 8, 2014
    Publication date: March 19, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Mitsuyoshi Kobayashi, Risako Ueno, Kazuhiro Suzuki, Hiroto Honda, Honam Kwon, Hideyuki Funaki
  • Publication number: 20150070532
    Abstract: According to one embodiment, a solid state imaging device includes an imaging substrate unit, a lens unit, and a color filter unit. The imaging substrate unit has a major surface including first region and second regions including pixels. The lens unit is separated from the major surface in a first direction perpendicular to the major surface. The lens unit includes a first lens overlapping the pixels of the first region when projected onto the major surface and a second lens overlapping the pixels of the second region when projected onto the major surface. The color filter unit is provided between the imaging substrate unit and the lens unit and is separated from the imaging substrate unit. The color filter unit includes a first color filter provided between the first region and the first lens, and a second color filter provided between the second region and the second lens.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 12, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Lisa MASUDA, Naotada Okada, Kazuhiro Suzuki, Risako Ueno, Mitsuyoshi Kobayashi, Hideyuki Funaki