Patents by Inventor Robert B. Taylor

Robert B. Taylor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7079721
    Abstract: A method and apparatus operates an array of laser sources as an integrated array on a single substrate or as integrated in an optical transmitter photonic integrated circuit (TxPIC) maintaining the emission wavelengths of such integrated laser sources at their targeted emission wavelengths or at least to more approximate their desired respective emission wavelengths. Wavelength changing elements may accompany the laser sources to bring about the change in their operational or emission wavelength to be corrected to or toward the desired or target emission wavelength. The wavelength changing elements may be comprise of temperature changing elements, current and voltage changing elements or bandgap changing elements.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: July 18, 2006
    Assignee: Infinera Corporation
    Inventors: Fred A. Kish, Jr., Charles H. Joyner, David F. Welch, Robert B. Taylor, Alan C. Nilsson
  • Patent number: 7079719
    Abstract: A method of tuning optical components integrated on a monolithic chip, such as an optical transmitter photonic integrated circuit (TxPIC), is disclosed where a group of first optical components are each fabricated to have an operating wavelength approximating a wavelength on a standardized or predetermined wavelength grid and are each included with a local wavelength tuning component also integrated in the chip. Each of the first optical components is wavelength tuned through their local wavelength tuning component to achieve a closer wavelength response that approximates their wavelength on the wavelength grid.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: July 18, 2006
    Assignee: Infinera Corporation
    Inventors: Fred A. Kish, Jr., Charles H. Joyner, David F. Welch, Jonas Webjorn, Robert B. Taylor, Alan C. Nilsson
  • Patent number: 7079720
    Abstract: A method of operating an array of laser sources integrated as an array in a single monolithic chip where the steps include designing the laser sources to have different target emission wavelengths so that together they form a spectral emission wavelength grid, coupling outputs from the laser sources to an array of gain/loss elements also integrated on the single monolithic chip, one each receiving the output from a respective laser source; and adjusting the outputs with the gain/loss elements so that the power levels across the laser source array are substantially uniform.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: July 18, 2006
    Assignee: Infinera Corporation
    Inventors: Fred A. Kish, Jr., Charles H. Joyner, David F. Welch, Robert B. Taylor, Alan C. Nilsson
  • Patent number: 7062111
    Abstract: A C- and/or L-band booster optical amplifier is utilized at the output of a semiconductor transmitter photonic integrated circuit (TxPIC) chip or the optical combined outputs of multiple semiconductor transmitter photonic integrated circuit (TxPIC) chips employed in an optical communication module, the deployment of integrated semiconductor optical amplifiers (SOAs) on the TxPIC chips can be eliminated. This would reduce both the complexity in designing and fabricating these chips as well as reducing the power consumption of the TxPIC chips. The deployment of such a Tx booster optical amplifier would also take into consideration the nonlinear effects of difficult high loss single mode fiber (SMF) or other fiber type links by allowing a higher power per channel to be achieved compared to the case where channel amplification is attempted solely on the TxPIC chip.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: June 13, 2006
    Inventors: Stephen G. Grubb, Matthew L. Mitchell, Robert B. Taylor, Ting-Kuang Chiang, Vincent G. Dominic
  • Patent number: 7058248
    Abstract: A C- and/or L-band booster optical amplifier is utilized in an optical communication system at the output of one or more semiconductor transmitter photonic integrated circuit (TxPIC) chips or the optical combined outputs of multiple semiconductor transmitter photonic integrated circuit (TxPIC) chips employed in an optical communication module, the deployment of integrated semiconductor optical amplifiers (SOAs) on the TxPIC chips can be eliminated. This would reduce both the complexity in designing and fabricating these chips as well as reducing the power consumption of the TxPIC chips. The deployment of such a Tx booster optical amplifier would also take into consideration the nonlinear effects of difficult high loss single mode fiber (SMF) or other fiber type links by allowing a higher power per channel to be achieved compared to the case where channel amplification is attempted solely on the TxPIC chip.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: June 6, 2006
    Assignee: Infinera Corporation
    Inventors: Stephen G. Grubb, Matthew L. Mitchell, Robert B. Taylor, Ting-Kuang Chiang, Vincent G. Dominic
  • Patent number: 7010185
    Abstract: A method of deploying a passive optical combiner that is a broad bandwidth spectral wavelength combiner for combining the outputs from multiples transmitter photonic integrated circuit (TxPIC) chips and, thereafter, the amplification of the combined channel signals with a booster optical amplifier couple between the passive optical combiner and the fiber transmission link. The booster optical amplifier may be a rear earth fiber amplifier, such as an erbium doped fiber amplifier (EDFA), or one or more semiconductor optical amplifiers (SOAs) on one or more semiconductor chips.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: March 7, 2006
    Assignee: Infinera Corporation
    Inventors: Stephen G. Grubb, Matthew L. Mitchell, Robert B. Taylor, Ting-Kuang Chiang, Vincent G. Dominic
  • Publication number: 20040258422
    Abstract: A C- and/or L-band booster optical amplifier is utilized in an optical communication system at the output of one or more semiconductor transmitter photonic integrated circuit (TxPIC) chips or the optical combined outputs of multiple semiconductor transmitter photonic integrated circuit (TxPIC) chips employed in an optical communication module, the deployment of integrated semiconductor optical amplifiers (SOAs) on the TxPIC chips can be eliminated. This would reduce both the complexity in designing and fabricating these chips as well as reducing the power consumption of the TxPIC chips. The deployment of such a Tx booster optical amplifier would also take into consideration the nonlinear effects of difficult high loss single mode fiber (SMF) or other fiber type links by allowing a higher power per channel to be achieved compared to the case where channel amplification is attempted solely on the TxPIC chip.
    Type: Application
    Filed: July 9, 2004
    Publication date: December 23, 2004
    Applicant: Infinera Corporation
    Inventors: Stephen G. Grubb, Matthew L. Mitchell, Robert B. Taylor, Ting-Kuang Chiang, Vincent G. Dominic
  • Publication number: 20040247233
    Abstract: A method of deploying a passive optical combiner that is a broad bandwidth spectral wavelength combiner for combining the outputs from multiples transmitter photonic integrated circuit (TxPIC) chips and, thereafter, the amplification of the combined channel signals with a booster optical amplifier couple between the passive optical combiner and the fiber transmission link. The booster optical amplifier may be a rear earth fiber amplifier, such as an erbium doped fiber amplifier (EDFA), or one or more semiconductor optical amplifiers (SOAs) on one or more semiconductor chips.
    Type: Application
    Filed: July 9, 2004
    Publication date: December 9, 2004
    Inventors: Stephen G. Grubb, Matthew L. Mitchell, Robert B. Taylor, Ting-Kuang Chiang, Vincent G. Dominic
  • Patent number: 6813621
    Abstract: A system and method for use in a computer system is provided to read and write graphical images by an application program by using a format independent interface with an image format specific modules to process application commands to read or write graphical images, allowing the application to read and write graphical image data in various file formats.
    Type: Grant
    Filed: August 12, 1999
    Date of Patent: November 2, 2004
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Robert B. Taylor, III, Kevin Bier, Robert C. Borcic, Jan E. Idomir
  • Publication number: 20040067006
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Application
    Filed: December 11, 2002
    Publication date: April 8, 2004
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Ting-Kuang Chiang, Robert Grencavich, Vinh D. Nguyen, Donald J. Pavinski, Marco E. Sosa
  • Publication number: 20040001248
    Abstract: A digital signal channel bypass is provided as bypass around an optical network optical amplifier, in particular, an analog type optical amplifier, such as an EDFA, in an optical transport network or system. The digital signal bypass provides for an ability to maintain the existing optical amplifier OO amplification site while inserting a bypass that provides ultra low-cost OEO REGEN in a digital optical network (DON) utilizing both semiconductor electronic integrated circuit chips and semiconductor photonic integrated circuit (PIC) chips where all the optical components are in semiconductor integrated chip form providing 1R, 2R, 3R or 4R regeneration as well as other signal caring functionality. A salient feature of the digital signal bypass is to regenerate signals in the optical span that are outside the gain bandwidth of the EDFA or other such amplifier.
    Type: Application
    Filed: October 8, 2002
    Publication date: January 1, 2004
    Inventors: Stephen G. Grubb, Matthew L. Mitchell, Robert B. Taylor, Vincent G. Dominic, Alan C. Nilsson
  • Publication number: 20030099018
    Abstract: A digital optical network (DON) is a new approach to low-cost, more compact optical transmitter modules and optical receiver modules for deployment in optical transport networks (OTNs). One important aspect of a digital optical network is the incorporation in these modules of transmitter photonic integrated circuit (TxPIC) chips and receiver photonic integrated circuit (TxPIC) chips in lieu of discrete modulated sources and detector sources with discrete multiplexers or demultiplexers.
    Type: Application
    Filed: October 8, 2002
    Publication date: May 29, 2003
    Inventors: Jagdeep Singh, Drew D. Perkins, David F. Welch, Mark Yin, Fred A. Kish, Stephen G. Grubb, Robert B. Taylor, Vincent G. Dominic, Matthew L. Mitchell
  • Publication number: 20030099425
    Abstract: A C- and/or L-band booster optical amplifier is utilized at the output of a semiconductor transmitter photonic integrated circuit (TxPIC) chip or the optical combined outputs of multiple semiconductor transmitter photonic integrated circuit (TxPIC) chips employed in an optical communication module, the deployment of integrated semiconductor optical amplifiers (SOAs) on th TxPIC chips can be eliminated. This would reduce both the complexity in designing and fabricating these chips as well as reducing the power consumption of the TxPIC chips. The deployment of such a Tx booster optical amplifier would also take into consideration the nonlinear effects of difficult high loss single mode fiber (SMF) or other fiber type links by allowing a higher power per channel to be achieved compared to the case where channel amplification is attempted solely on the TxPIC chip.
    Type: Application
    Filed: October 31, 2002
    Publication date: May 29, 2003
    Inventors: Stephen G. Grubb, Matthew L. Mitchell, Robert B. Taylor, Ting-Kuang Chiang, Vincent G. Dominic
  • Publication number: 20030095736
    Abstract: A monolithic transmitter photonic integrated circuit (TxPIC) chip comprises an array of modulated sources formed on the PIC chip and having different operating wavelengths according to a standardized wavelength grid and providing signal outputs of different wavelengths. Pluralities of wavelength tuning elements are integrated on the chip, one associated with each of the modulated sources. An optical combiner is formed on the PIC chip and the signal outputs of the modulated sources are optically coupled to one or more inputs of the optical combiner and provided as a combined channel signal output from the combiner. The wavelength tuning elements provide for tuning the operating wavelength of the respective modulated sources to be approximate or to be chirped to the standardized wavelength grid. The wavelength tuning elements are temperature changing elements, current and voltage changing elements or bandgap changing elements.
    Type: Application
    Filed: October 8, 2002
    Publication date: May 22, 2003
    Inventors: Fred A. Kish, Charles H. Joyner, David F. Welch, Jonas Webjorn, Robert B. Taylor, Alan C. Nilsson
  • Publication number: 20030095737
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Application
    Filed: October 8, 2002
    Publication date: May 22, 2003
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Patent number: 6359716
    Abstract: Method and apparatus for an analog FM optical link having a low noise figure and a high spurious-free dynamic range. In one embodiment, the apparatus includes a FM DFB laser and a balanced receiver. The balanced receiver includes an optical splitter to split the received beam into two optical paths. Each of the two paths includes an optical filter and a photodetector. A differentiator coupled to the electrical output of the photodetectors produces a demodulated electrical signal in response to the RF signal used to modulate the DFB laser. This configuration can eliminate the laser relative intensity noise and second order harmonics. In addition, third order distortion is eliminated when there is no intensity modulation or greatly reduced when intensity modulation is present.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: March 19, 2002
    Assignee: Massachusetts Institute of Technology
    Inventor: Robert B. Taylor
  • Patent number: 5954466
    Abstract: An anti-rotation clip for preventing rotation of a nut-like member (nut or bolt head) of a flanged connection to facilitate tightening or loosening of the nut-like member and eliminate the need to use two wrenches for tightening or loosening a nut or bolt. The clip is a generally L-shaped member having a horizontal portion and a vertical portion at one end thereof extending generally perpendicular thereto. A polygonal opening extending vertically through the horizontal portion has a plurality of discrete angled sides configured to surround and engage the sides of the nut-like member.
    Type: Grant
    Filed: February 4, 1998
    Date of Patent: September 21, 1999
    Assignee: Muskegon Tools, L.L.C.
    Inventors: Eugene M. Coffey, Robert B. Taylor
  • Patent number: 5867633
    Abstract: The present invention relates to a method and system for efficient image handling. The invention includes an image server with which image files are registered. The image processing requests are sent to the image server to produce image data representing the processed image file. In one embodiment of the invention, a document processing application obtains an image file for printing. The application registers the image with the image server. The image server returns an identifier identifying the image file which is used for subsequent image processing requests. The application initiates a print job, sending the image identifier and selected print parameters to a printer driver. In response, the printer driver negotiates image processing requests with the image server to modify the image file in accordance with the selected print parameters. Finally, the processed image data is retrieved from the image server and sent to the printer.
    Type: Grant
    Filed: December 9, 1996
    Date of Patent: February 2, 1999
    Assignee: Hewlett-Packard Company
    Inventors: Robert B. Taylor, III, Kirt Alan Winter, Robert Chou, Sachin Naik
  • Patent number: 5650224
    Abstract: An elongated structural member suitable for use as a marine piling includes a continuous, extruded plastic body having rebar disposed within the plastic body and extending in the lengthwise direction of the structural member. The structural member is formed by continuously extruding a molten plastic into a die so that the molten plastic surrounds and bonds to rebar fed into the die.
    Type: Grant
    Filed: October 3, 1996
    Date of Patent: July 22, 1997
    Assignee: Seaward International, Inc.
    Inventors: Frank A. March, Robert B. Taylor, John H. Menge, Russell J. Gould, Thomas M. Pontiff
  • Patent number: D420278
    Type: Grant
    Filed: February 4, 1998
    Date of Patent: February 8, 2000
    Assignee: Muskegon Tools, L.L.C.
    Inventors: Eugene M. Coffey, Robert B. Taylor