Patents by Inventor Robert F. Kamrath

Robert F. Kamrath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11435616
    Abstract: Optical constructions are disclosed. A disclosed optical construction includes a reflective polarizer layer, and an optical film that is disposed on the reflective polarizer layer. The optical film has an optical haze that is not less than about 50%. Substantial portions of each two neighboring major surfaces in the optical construction are in physical contact with each other. The optical construction has an axial luminance gain that is not less than about 1.2.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: September 6, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Encai Hao, Fei Lu, William Blake Kolb, Brian W. Ostlie, Adam D. Haag, Michael Benton Free, William D. Coggio, Michael L. Steiner, Soemantri Widagdo, Kui Chen-Ho, Lan H. Liu, Robert F. Kamrath, Scott M. Tapio, John A. Wheatley, Charles D. Hoyle, Michael F. Weber
  • Publication number: 20200233268
    Abstract: Optical constructions are disclosed. A disclosed optical construction includes a reflective polarizer layer, and an optical film that is disposed on the reflective polarizer layer. The optical film has an optical haze that is not less than about 50%. Substantial portions of each two neighboring major surfaces in the optical construction are in physical contact with each other. The optical construction has an axial luminance gain that is not less than about 1.2.
    Type: Application
    Filed: April 6, 2020
    Publication date: July 23, 2020
    Inventors: Encai HAO, Fei LU, William Blake KOLB, Brian W. OSTLIE, Adam D. HAAG, Michael Benton FREE, William D. COGGIO, Michael L. STEINER, Soemantri WIDAGDO, Kui CHEN-HO, Lan H. LIU, Robert F. KAMRATH, Scott M. TAPIO, John A. WHEATLEY, Charles D. HOYLE, Michael F. WEBER
  • Patent number: 10649274
    Abstract: Optical constructions are disclosed. A disclosed optical construction includes a reflective polarizer layer, and an optical film that is disposed on the reflective polarizer layer. The optical film has an optical haze that is not less than about 50%. Substantial portions of each two neighboring major surfaces in the optical construction are in physical contact with each other. The optical construction has an axial luminance gain that is not less than about 1.2.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: May 12, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Encai Hao, Fei Lu, William Blake Kolb, Brian W. Ostlie, Adam D. Haag, Michael Benton Free, William D. Coggio, Michael L. Steiner, Soemantri Widagdo, Kui Chen-Ho, Lan H. Liu, Robert F. Kamrath, Scott M. Tapio, John A. Wheatley, Charles D. Hoyle, Michael F. Weber
  • Patent number: 10502869
    Abstract: An optical article includes an optical element, a low refractive index layer disposed on the optical element having an effective refractive index of 1.3 or less and a polymeric protective layer disposed on the low refractive index layer. The low refractive index layer includes a binder, a plurality of metal oxide particles dispersed in the binder, and a plurality of interconnected voids. The polymeric protective layer does not increase an effective refractive index of the optical article by greater than 10%.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: December 10, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: William D. Coggio, Ramesh C. Kumar, John A. Wheatley, Michael L. Steiner, William F. Edmonds, Lan H. Liu, Encai Hao, Robert F. Kamrath, John J. Stradinger
  • Patent number: 10295724
    Abstract: This application describes a back-lit transmissive display including a transmissive display and a variable index light extraction layer optically coupled to a lightguide. The variable index light extraction layer has first regions of nanovoided polymeric material and second regions of the nanovoided polymeric material and an additional material. The first and second regions are disposed such that for light being transported at a supercritical angle in the lightguide, the variable index light extraction layer selectively extracts the light in a predetermined way based on the geometric arrangement of the first and second regions. The transmissive display may be a transmissive display panel or a polymeric film such as a graphic.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: May 21, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: David Scott Thompson, Kevin R. Schaffer, Zhaohui Yang, Encai Hao, Audrey A. Sherman, Michael A. Meis, John A. Wheatley, Matthew S. Stay, Robert F. Kamrath, Mikhail L. Pekurovsky, Steven D. Solomonson
  • Publication number: 20180134010
    Abstract: The present disclosure relates to compressible, multilayer articles useful in force sensing capacitors. The compressible multilayer articles include a silicone polymer layer having a first major surface and a second major surface and a first primer layer having a first major surface and a second major surface, wherein the thickness of the first primer layer is from about 100 nanometers to about 100 microns and at least a portion of the first major surface of the first primer layer is adhered to and in contact with the first major surface of the silicone polymer. The multilayer articles may include at least one of a first electrode and second primer layer. Methods of making the compressible, multilayer articles are also disclosed.
    Type: Application
    Filed: April 13, 2016
    Publication date: May 17, 2018
    Inventors: Margot A. BRANIGAN, Michael Benton FREE, David T. AMOS, Robert F. KAMRATH, Stephen A. JOHNSON, John D. LE
  • Publication number: 20180104941
    Abstract: The present disclosure relates to compressible, multilayer articles useful in force sensing capacitors. The compressible, multilayer articles include a cured, silicone elastomer layer having a first major surface and a second major surface and at least one of a first and second tie-layer, each having a first major surface and a second major surface, comprising a silicone polyoxamide, wherein the first major surface of the first tie-layer is in contact with and adhered to the first major surface of the cured, silicone elastomer layer and/or the first major surface of the second tie-layer is in contact with and adhered to the second major surface of the cured, silicone elastomer layer. The multilayer articles may include at least one of a first electrode and first primer layer and a second electrode and second primer layer. Methods of making the compressible, multilayer articles are also disclosed.
    Type: Application
    Filed: April 12, 2016
    Publication date: April 19, 2018
    Inventors: Michael Benton FREE, Margot A. BRANIGAN, Robert F. KAMRATH, Stephen A. JOHNSON, John D. LE, Kanta KUMAR
  • Patent number: 9878954
    Abstract: Vacuum insulated glass units having layered pillars. The glass units include two glass panes and an edge seal between the glass panes with a substantial vacuum gap between them. A plurality of pillars are located between the glass panes as spacers to maintain the vacuum gap. The pillars have a sintered ceramic, alpha alumina, or zirconia body with a tapered sidewall and a functional layer on a surface of the body.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: January 30, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Margaret M. Vogel-Martin, Martin B. Wolk, Michael Benton Free, Olester Benson, Jr., Evan L. Schwartz, Robert F. Kamrath, Brant U. Kolb, Kathleen M. Humpal, Mark J. Hendrickson
  • Patent number: 9776384
    Abstract: Inorganic multilayer lamination transfer films, methods of forming these lamination transfer films, and methods of using these lamination transfer films. These inorganic multilayer lamination transfer films can have alternating layers including inorganic nanoparticles, sacrificial materials, and optionally inorganic precursors that can be densified to form an inorganic optical stack. Receptor substrates, such as glass or metal, are laminated to the multilayer lamination transfer films.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: October 3, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Mark J. Pellerite, Robert F. Kamrath, Stephen A. Johnson, Terry O. Collier, Haefa Mansour
  • Patent number: 9731473
    Abstract: Transfer films, articles made therewith, and methods of making and using transfer films to form bridged nanostructures are disclosed.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: August 15, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Evan L. Schwartz, Justin P. Meyer, Olester Benson, Jr., Terry O. Collier, Michael Benton Free, Robert F. Kamrath, Mieczyslaw H. Mazurek, David B. Olson, K. Raveesh Shenoy, Martin B. Wolk
  • Publication number: 20170190161
    Abstract: Transfer films, articles made therewith, and methods of making and using transfer films to form an inorganic optical stack are disclosed.
    Type: Application
    Filed: January 20, 2017
    Publication date: July 6, 2017
    Inventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Mark J. Pellerite, Robert F. Kamrath, Stephen A. Johnson, Terry O. Collier, Haefa Mansour
  • Publication number: 20170166750
    Abstract: Presently described are hardcoat compositions comprising at least one first (meth)acrylate monomer comprising at least three (meth)acrylate groups and C2-C4 alkoxy repeat units wherein the monomer has a molecular weight per (meth)acrylate group ranging from about 220 to 375 g/mole and at least one second (meth)acrylate monomer comprising at least three (meth)acrylate groups. In one embodiment, the hardcoat composition further comprises and at least 50 wt-% solids of silica nanoparticles. Also described are articles, such as protective films, displays, and touch screens comprising such cured hardcoat compositions.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 15, 2017
    Inventors: Richard J. Pokorny, Steven D. Solomonson, Robert F. Kamrath, Anthony M. Renstrom, Roger W. Barton, Craig R. Sykora
  • Patent number: 9586385
    Abstract: The present disclosure relates to inorganic multilayer lamination transfer films, methods of forming these lamination transfer films and methods of using these lamination transfer films. These inorganic multilayer lamination transfer films can have alternating layers including inorganic nanoparticles, sacrificial materials and optionally inorganic precursors that can be densified to form an inorganic optical stack.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: March 7, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Mark J. Pellerite, Robert F. Kamrath, Stephen A. Johnson, Terry O. Collier, Haefa Mansour
  • Patent number: 9588262
    Abstract: An optical article includes an optical element and a low refractive index layer disposed on the optical element. The low refractive index layer having an effective refractive index of 1.3 or less and including a binder, a plurality of metal oxide particles dispersed in the binder and a plurality of interconnected voids. The low refractive index layer has a haze value of at least 30%.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: March 7, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: William D. Coggio, Michael L. Steiner, William F. Edmonds, Robert F. Kamrath, Lan H. Liu, Encai Hao
  • Publication number: 20170031078
    Abstract: This application describes a back-lit transmissive display including a transmissive display and a variable index light extraction layer optically coupled to a lightguide. The variable index light extraction layer has first regions of nanovoided polymeric material and second regions of the nanovoided polymeric material and an additional material. The first and second regions are disposed such that for light being transported at a supercritical angle in the lightguide, the variable index light extraction layer selectively extracts the light in a predetermined way based on the geometric arrangement of the first and second regions. The transmissive display may be a transmissive display panel or a polymeric film such as a graphic.
    Type: Application
    Filed: October 13, 2016
    Publication date: February 2, 2017
    Inventors: David Scott Thompson, Kevin R. Schaffer, Zhaohui Yang, Encai Hao, Audrey A. Sherman, Michael A. Meis, John A. Wheatley, Matthew S. Stay, Robert F. Kamrath, Mikhail L. Pekurovsky, Steven D. Solomonson
  • Patent number: 9541701
    Abstract: This application describes a back-lit transmissive display including a transmissive display (620) and a variable index light extraction layer (640) optically coupled to a lightguide (630). The variable index light extraction layer has first regions (140) of nanovoided polymeric material and second regions (130) of the nanovoided polymeric material and an additional material. The first and second regions are disposed such that for light being transported at a supercritical angle in the lightguide, the variable index light extraction layer selectively extracts the light in a predetermined way based on the geometric arrangement of the first and second regions. The transmissive display may be a transmissive display panel or a polymeric film such as a graphic.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: January 10, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: David Scott Thompson, Kevin R. Schaffer, Zhaohui Yang, Encai Hao, Audrey A. Sherman, Michael A. Meis, John A. Wheatley, Matthew S. Stay, Robert F. Kamrath, Mikhail L. Pekurovsky, Steven D. Solomonson
  • Publication number: 20160326383
    Abstract: Presently described are hardcoat compositions comprising at least one first (meth)acrylate monomer comprising at least three (meth)acrylate groups and C2-C4 alkoxy repeat units wherein the monomer has a molecular weight per (meth)acrylate group ranging from about 220 to 375 g/mole and at least one second (meth)acrylate monomer comprising at least three (meth)acrylate groups. The hardcoat composition further comprises inorganic oxide nanoparticles such as silica that comprises a copolymer izable surface treatment and a non-copolymerizable silane surface treatment. Also described are articles, such as protective films, displays, and touch screens comprising such cured hardcoat compositions.
    Type: Application
    Filed: January 13, 2015
    Publication date: November 10, 2016
    Inventors: Richard J. Pokorny, Robert F. Kamrath, Michelle L. Toy, Steven D. Solomonson, Elisa M. Cross, Anthony M. Renstrom, Roger W. Barton, Craig R. Sykora
  • Publication number: 20160318277
    Abstract: Transfer films, articles made therewith, and methods of making and using transfer films to form bridged nanostructures are disclosed.
    Type: Application
    Filed: July 11, 2016
    Publication date: November 3, 2016
    Inventors: Evan L. Schwartz, Justin P. Meyer, Olester Benson, JR., Terry O. Collier, Michael Benton Free, Robert F. Kamrath, Mieczyslaw H. Mazurek, David B. Olson, K. Raveesh Shenoy, Martin B. Wolk
  • Patent number: 9419250
    Abstract: Methods of making transfer films to form bridged nanostructures are disclosed. The methods include applying a thermally stable backfill layer to a structured surface of a sacrificial template layer.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: August 16, 2016
    Assignee: 3M Innovative Properties Company
    Inventors: Evan L. Schwartz, Justin P. Meyer, Olester Benson, Terry O. Collier, Michael Benton Free, Robert F. Kamrath, Mieczyslaw H. Mazurek, David B. Olson, K. Raveesh Shenoy, Martin B. Wolk
  • Patent number: 9328265
    Abstract: An adhesive tie layer includes a binder including a multifunctional acrylate and a polyurethane, surface treated nanoparticles dispersed in the binder, and a plurality of interconnected voids. A volume fraction of interconnected voids in the adhesive tie layer is not less than about 10%.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: May 3, 2016
    Assignee: 3M Innovative Properties Company
    Inventors: Encai Hao, Kurt C. Melancon, Audrey A. Sherman, William Blake Kolb, Robert F. Kamrath, Maureen A. Kavanagh, Chris J. Tanley, Jeffrey A. Peterson