Patents by Inventor Robert F. Shepherd

Robert F. Shepherd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11921321
    Abstract: Provided are three dimensional, stretchable, optical sensor networks that can localize deformations. The devices described herein are suitable for uses in soft robots to determine the position of external contact, such as touching, and possibly internal deformations that may be caused by actuation. Sensor networks of the present disclosure contain a substrate, such as a 3D lattice, and cores having a cladding, such as air. Light passes through the cores and upon deformation of the substrate, cores may come into contact, allowing light to couple between cores due to frustrated total internal reflection. The resulting changes in intensity in the cores can be used to determine the placement and magnitude of deformation.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: March 5, 2024
    Assignee: Cornell University
    Inventors: Patricia Xu, Robert F. Shepherd
  • Patent number: 11773948
    Abstract: A transmission is presented, including a spool having a bore. An outer member disposed on the spool, and a cord is configured to at least partially wrap around the outer member. The outer member is configured to constrict and unconstrict to a force applied to the outer member. In this way, rotation of the spool causes a tension force to be applied to the cord, and a greater tension force in the cord will cause the outer member to constrict more than a lower tension force in the cord.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: October 3, 2023
    Assignee: Cornell University
    Inventors: Kevin W. O'Brien, Robert F. Shepherd
  • Publication number: 20230238559
    Abstract: A data communication device includes a battery having a first flowable electrolyte. In some embodiments, the battery is a redox flow battery (RFB) or a hybrid RFB. A first channel contains the first flowable electrolyte of the battery (i.e., contains at least a portion of the first flowable electrolyte). The first channel may include a tube and/or a reservoir. At least a portion of the first channel may be flexible and/or stretchable. The first channel has a first electrode configured to impart and/or receive a first electrical signal in the first flowable electrolyte. The first electrical signal may be a digital signal. The first electrical signal may be an encoded signal. The device may include a transceiver in electronic communication with the first electrode.
    Type: Application
    Filed: June 15, 2021
    Publication date: July 27, 2023
    Inventors: Robert F. Shepherd, Hyeon Seon An, Xu Liu, Matthew Ryan Daniel
  • Patent number: 11701245
    Abstract: The present disclosure provides an electrohydraulic device. The device includes a battery having a vessel containing a flowable electrolyte. The battery may be a flow cell battery, such as, for example, a redox flow cell battery. In a flow cell battery, the flowable electrolyte may a catholyte and/or an anolyte. An actuator is in fluidic communication with the vessel of the battery. The actuator is configured to be actuated using the flowable electrolyte. A cation exchange membrane may separate the vessel into an anolyte side and a catholyte side. The actuator may be in fluidic communication with either side (anolyte side or catholyte side) of the vessel.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: July 18, 2023
    Assignee: Cornell University
    Inventors: Robert F. Shepherd, James Pikul
  • Publication number: 20230048203
    Abstract: Provided are three dimensional, stretchable, optical sensor networks that can localize deformations. The devices described herein are suitable for uses in soft robots to determine the position of external contact, such as touching, and possibly internal deformations that may be caused by actuation. Sensor networks of the present disclosure contain a substrate, such as a 3D lattice, and cores having a cladding, such as air. Light passes through the cores and upon deformation of the substrate, cores may come into contact, allowing light to couple between cores due to frustrated total internal reflection. The resulting changes in intensity in the cores can be used to determine the placement and magnitude of deformation.
    Type: Application
    Filed: September 12, 2022
    Publication date: February 16, 2023
    Inventors: Patricia Xu, Robert F. Shepherd
  • Patent number: 11500152
    Abstract: Provided are three dimensional, stretchable, optical sensor networks that can localize deformations. The devices described herein are suitable for uses in soft robots to determine the position of external contact, such as touching, and possibly internal deformations that may be caused by actuation. Sensor networks of the present disclosure contain a substrate, such as a 3D lattice, and cores having a cladding, such as air. Light passes through the cores and upon deformation of the substrate, cores may come into contact, allowing light to couple between cores due to frustrated total internal reflection. The resulting changes in intensity in the cores can be used to determine the placement and magnitude of deformation.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: November 15, 2022
    Assignee: Cornell University
    Inventors: Patricia Xu, Robert F. Shepherd
  • Publication number: 20220218500
    Abstract: The present disclosure provides an electrohydraulic device. The device includes a battery having a vessel containing a flowable electrolyte. The battery may be a flow cell battery, such as, for example, a redox flow cell battery. In a flow cell battery, the flowable electrolyte may a catholyte and/or an anolyte. An actuator is in fluidic communication with the vessel of the battery. The actuator is configured to be actuated using the flowable electrolyte. A cation exchange membrane may separate the vessel into an anolyte side and a catholyte side. The actuator may be in fluidic communication with either side (anolyte side or catholyte side) of the vessel.
    Type: Application
    Filed: April 23, 2020
    Publication date: July 14, 2022
    Inventors: Robert F. SHEPHERD, James PIKUL
  • Publication number: 20210215235
    Abstract: A transmission is presented, including a spool having a bore. An outer member disposed on the spool, and a cord is configured to at least partially wrap around the outer member. The outer member is configured to constrict and unconstrict to a force applied to the outer member. In this way, rotation of the spool causes a tension force to be applied to the cord, and a greater tension force in the cord will cause the outer member to constrict more than a lower tension force in the cord.
    Type: Application
    Filed: September 19, 2018
    Publication date: July 15, 2021
    Inventors: Kevin W. O'BRIEN, Robert F. SHEPHERD
  • Patent number: 10994413
    Abstract: Systems and methods for providing flexible robotic actuators are disclosed. Some embodiments of the disclosed subject matter include a soft robot capable of providing a radial deflection motions; a soft tentacle actuator capable of providing a variety of motions and providing transportation means for various types of materials; and a hybrid robotic system that retains desirable characteristics of both soft robots and hard robots. Some embodiments of the disclosed subject matter also include methods for operating the disclosed robotic systems.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: May 4, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: Stephen A. Morin, Robert F. Shepherd, Adam Stokes, Filip Ilievski, Ramses V. Martinez, Jamie L. Branch, Carina R. Fish, Lihua Jin, Rui M. D. Nunes, Zhigang Suo, George M. Whitesides
  • Patent number: 10944072
    Abstract: A light emitting capacitor can include a first and second electrode, an electroluminescent layer, and at least one elastomeric layer. The electroluminescent layer, which can include an elastomeric material doped with semiconducting nanoparticles, can be disposed between the first and second electrodes. The elastomeric layer can encapsulate the first electrode, second electrode, and electroluminescent layer. The first and second electrodes can be hydrogel or conductive electrodes. The light emitting capacitor can provide dynamic coloration or sensory feedback. The light emitting capacitor can be used in, for example, robotics, wearables (displays, sensors, textiles), and fashion.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: March 9, 2021
    Assignee: Cornell University
    Inventors: Chris M. Larson, Robert F. Shepherd, Bryan N. Peele, Sanlin S. Robinson, Shuo Li
  • Publication number: 20200400886
    Abstract: Provided are three dimensional, stretchable, optical sensor networks that can localize deformations. The devices described herein are suitable for uses in soft robots to determine the position of external contact, such as touching, and possibly internal deformations that may be caused by actuation. Sensor networks of the present disclosure contain a substrate, such as a 3D lattice, and cores having a cladding, such as air. Light passes through the cores and upon deformation of the substrate, cores may come into contact, allowing light to couple between cores due to frustrated total internal reflection. The resulting changes in intensity in the cores can be used to determine the placement and magnitude of deformation.
    Type: Application
    Filed: November 29, 2018
    Publication date: December 24, 2020
    Inventors: Patricia XU, Robert F. SHEPHERD
  • Patent number: 10843336
    Abstract: Reconfigurable soft robotic actuators with hard components are described. Magnetic attraction is used to couple flexible molded bodies capable of actuation upon pressurization with other flexible molded bodies and/or with hard components (e.g., frames and connectors) to form a seal for fluidic communication and cooperative actuation. Pneumatic de-coupling chambers built into the hard components to de-couple the hard components from the magnetically-coupled soft molded bodies are described. The use of magnetic self-alignment coupling and pneumatic de-coupling allows for the remote assembly and disassembly of complex structures involving hard and soft components. The magnetic coupling allows for rapid, reversible reconfiguration of hybrid soft-hard robots for repair, testing new designs, and carrying out new tasks.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: November 24, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: Sen Wai Kwok, Stephen A. Morin, Bobak Mosadegh, Ju-Hee So, Robert F. Shepherd, George M. Whitesides
  • Patent number: 10767024
    Abstract: Soft actuators are fabricated from materials that enable the actuators to be constructed with an open-celled architecture such as an interconnected network of pore elements. The movement of a soft actuator is controlled by manipulating the open-celled architecture, for example inflating/deflating select portions of the open-celled architecture using a substance such as compressed fluid.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: September 8, 2020
    Assignee: Cornell University
    Inventors: Robert F. Shepherd, Benjamin C. MacMurray, Huichan Zhao
  • Patent number: 10689044
    Abstract: A pneumatically powered, fully untethered mobile soft robot is described. Composites consisting of silicone elastomer, polyaramid fabric, and hollow glass microspheres were used to fabricate a sufficiently large soft robot to carry the miniature air compressors, battery, valves, and controller needed for autonomous operation. Fabrication techniques were developed to mold a 0.65 meter long soft body with modified Pneumatic network actuators capable of operating at the elevated pressures (up to 138 kPa) required to actuate the legs of the robot and hold payloads of up to 8 kg. The soft robot is safe to handle, and its silicone body is innately resilient to a variety of adverse environmental conditions including snow, puddles of water, direct (albeit limited) exposure to flames, and the crushing force of being run over by an automobile.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: June 23, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: Michael T. Tolley, Robert F. Shepherd, Bobak Mosadegh, Robert J. Wood, George M. Whitesides
  • Patent number: 10639801
    Abstract: An actuator includes a plurality of chambers comprised of an extensible material, the chambers having interior side walls and exterior walls, wherein at least a portion of the interior side wall is separated from an interior side wall of an adjacent chamber; and a strain limiting base; and a channel that fluidically interconnects the plurality of chambers, wherein the interior walls are configured to be more compliant than the exterior walls.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: May 5, 2020
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Bobak Mosadegh, Robert F. Shepherd, George M. Whitesides
  • Publication number: 20200032062
    Abstract: Provided are polymer compositions and methods of making 3D structures. The polymer compositions include a polymer component (e.g., siloxane polymer) having a plurality of vinyl groups and a polymer component (e.g., siloxane polymer) having a plurality of thiol groups. The polymer compositions can be used to form elastomeric 3D structures. Also provided are 3D printers having an exposure window comprising a film of an organic polymer disposed on the outer surface of the exposure window.
    Type: Application
    Filed: August 1, 2017
    Publication date: January 30, 2020
    Inventors: Thomas J. WALLIN, Robert F. SHEPHERD
  • Patent number: 10465723
    Abstract: A soft robotic device includes a flexible body having a width, a length and a thickness, wherein the thickness is at least 1 mm, the flexible body having at least one channel disposed within the flexible body, the channel defined by upper, lower and side walls, wherein at least one wall is strain limiting; and a pressurizing inlet in fluid communication with the at least one channel, the at least one channel positioned and arranged such that the wall opposite the strain limiting wall preferentially expands when the soft robotic device is pressurized through the inlet.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: November 5, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Filip Ilievski, Xin Chen, Aaron D. Mazzeo, George M. Whitesides, Robert F. Shepherd, Ramses V. Martinez, Won Jae Choi, Sen Wai Kwok, Stephen A. Morin, Adam Stokes, Zhihong Nie
  • Publication number: 20190321522
    Abstract: Foam-based pneumatic actuators can be formed in a state of mechanical compression prior to actuation. An actuator includes an elastomeric foam; a coating disposed on the elastomeric foam; and an elastomer seal disposed on the coating. The coating constrains the elastomeric foam and can be configured to break or fracture when the elastomeric foam inflates. The elastomer seal can be configured to be impermeable to the actuating fluid. Such a foam actuator can be used in a cardiac compression device. These foam actuators possess increased actuation deformation and an actuation exerted force for a given inflation pressure. A large deformation can be provided from materials having low ultimate strains.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 24, 2019
    Inventors: Robert F. SHEPHERD, James K. MIN, Benjamin C. MAC MURRAY
  • Patent number: 10406698
    Abstract: Apparatus, systems, and methods for providing modular soft robots are disclosed. In particular, the disclosed modular soft robot can include a flexible actuator having a plurality of molded flexible units. Each molded flexible unit can include a mechanical connector configured to provide a physical coupling to another molded flexible unit, and the plurality of molded flexible units are arranged to form an embedded fluidic channel. The modular soft robot can also include an inlet coupled to the embedded fluidic channel, where the inlet is configured to receive pressurized or depressurized fluid to inflate or deflate a portion of the flexible actuator, thereby causing an actuation of the flexible actuator.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: September 10, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Stephen A. Morin, Sen Wai Kwok, Robert F. Shepherd, George M. Whitesides
  • Patent number: 10299779
    Abstract: A surgical device for displacement of organs within a body cavity for providing at least visual access to a selected site includes an expandable bladder, wherein the elasticity of the bladder varies across the surface of the bladder, said variation in elasticity selected to provide a predetermined, non-spherical shape when expanded; and a valve on the proximal end on the inflatable bladder for introduction of a pressurizing gas into the soft bladder.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: May 28, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Robert F. Shepherd, George M. Whitesides, Bobak Mosadegh