Patents by Inventor Robert G. Waarts

Robert G. Waarts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6212310
    Abstract: Power scaling by multiplexing multiple fiber gain sources with different wavelengths, pulsing or polarization modes of operation is achieved through multiplex combining of the multiple fiber gain sources to provide high power outputs, such as ranging from tens of watts to hundreds of watts, provided on a single mode or multimode fiber.
    Type: Grant
    Filed: October 21, 1997
    Date of Patent: April 3, 2001
    Assignee: SDL, Inc.
    Inventors: Robert G. Waarts, David F. Welch, Stephen G. Grubb, Jean-Luc Archambault, Steven Sanders, Raymond Zanoni, Donald R. Scifres
  • Patent number: 6181465
    Abstract: An optical fiber used as the active amplifying medium in a fiber laser is arranged to have a high insertion loss at an undesired frequency, while retaining a low insertion loss at a desired lasing frequency. In one embodiment, loss at a Raman-shifted frequency is introduced by using an optical fiber which has multiple claddings with an index profile that includes an elevated index region located away from the core, but within the evanescent coupling region of the core. A distributed loss, which can be enhanced by bending, is produced at the Raman frequency which effectively raises the threshold at which Raman scattering occurs in the fiber and therefore results in a frequency-selective fiber. In another embodiment, an absorbing layer is placed around the core region. The absorbing layer is chosen to have a sharp absorption edge so that it absorbs highly at the Raman-shifted wavelength, but minimally at the desired lasing wavelength.
    Type: Grant
    Filed: April 5, 1999
    Date of Patent: January 30, 2001
    Assignee: SDL, Inc.
    Inventors: Stephen G. Grubb, Raymond Zanoni, Robert G. Waarts, Jean-Luc Archambault
  • Patent number: 6118575
    Abstract: An optical fiber used as the active amplifying medium in a fiber laser is arranged to have a high insertion loss at an undesired frequency, while retaining a low insertion loss at a desired lasing frequency. In one embodiment, loss at a Raman-shifted frequency is introduced by using an optical fiber which has multiple claddings with an index profile that includes an elevated index region located away from the core, but within the evanescent coupling region of the core. A distributed loss, which can be enhanced by bending, is produced at the Raman frequency which effectively raises the threshold at which Raman scattering occurs in the fiber and therefore results in a frequency-selective fiber. In another embodiment, an absorbing layer is placed around the core region. The absorbing layer is chosen to have a sharp absorption edge so that it absorbs highly at the Raman-shifted wavelength, but minimally at the desired lasing wavelength.
    Type: Grant
    Filed: April 5, 1999
    Date of Patent: September 12, 2000
    Assignee: SDL, Inc.
    Inventors: Stephen G. Grubb, Raymond Zanoni, Robert G. Waarts, Jean-Luc Archambault
  • Patent number: 6081369
    Abstract: An optical amplifier system includes a fiber amplifier doped with rare earth dopant provided in its fiber core. A plurality of fiber lasers have their light outputs optically coupled together for launching into the fiber amplifier for optically pumping the amplifier. Each of the fiber lasers have a rare earth dopant provided in its fiber core for stimulated lasing emission with the rare earth dopant of the fiber amplifier being different from the rear earth dopant of the fiber lasers. A reflector may be provided in each of the coupling fibers for reflecting a portion of the respective light outputs back into the fiber lasers to control their wavelength of operation, the wavelength of operation of the reflectors chosen to be within a high absorption region of the absorption band of the fiber amplifier. Where the pump source is a semiconductor laser source, the source may include a flared gain section to increase the output intensity of the light output of the source.
    Type: Grant
    Filed: August 2, 1999
    Date of Patent: June 27, 2000
    Assignee: SDL., Inc.
    Inventors: Robert G. Waarts, Steven Sanders, David F. Welch
  • Patent number: 6049415
    Abstract: A number of variations are provided of a device that provides an amplified single polarization optical signal. Each of these relies on the use of a non-polarization maintaining gain medium through which the signal is directed, and a polarization shifter and reflector that direct the signal back through the same gain medium with a shifted polarization state. An input polarization beamsplitter directs the returning optical signal away to an output, based on its shifted polarization state. The embodiments of the invention include the use of double-clad fiber. Multiple stages may be used to provide specific amplification parameters. In one embodiment, both amplification stages reside in the same polarization shifting optical path. A polarization maintaining amplifier of this type may be used as part of a master oscillator-power amplifier, in which polarization maintaining fiber is used as part of the source laser.
    Type: Grant
    Filed: December 8, 1997
    Date of Patent: April 11, 2000
    Assignee: SDL, Inc.
    Inventors: Stephen G. Grubb, Paul Freeman, Stuart MacCormack, Robert G. Waarts
  • Patent number: 6021141
    Abstract: A harmonic generator laser system which features a distributed Bragg reflector (DBR) or distributed feedback (DFB) tunable diode laser coupled to a quasi-phase matched (QPM) waveguide of optically nonlinear material. Tuning of the DBR laser may be achieved either thermally or via current injection, or both, halving the wavelength of a red laser into the visible blue spectral band. Thermal tuning may provide a coarse tuning adjustment, while injected current may provide fine tuning accessible to a user. Separately or in combination with current tuning, a modulation signal may be applied to the DBR laser for achieving an intensity modulated or a pulsed output. In another embodiment, modulation may be achieved by frequency modulation of the laser. A very compact tunable blue laser is formed. In yet another embodiment a double clad fiber amplifier is disposed between the tunable laser and the waveguide.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: February 1, 2000
    Assignee: SDL, Inc.
    Inventors: Derek W. Nam, David F. Welch, Robert G. Waarts, Jo S. Major
  • Patent number: 5933271
    Abstract: Two approaches are provided for achieving an optical amplifier system capable of producing high peak power, high energy pulse outputs while suppressing scattering noise. The first approach relates to an optical amplifier system which has at least one laser diode pulsed or cw pumped double clad fiber amplifier utilized for receiving a high frequency modulated injected signal pulse of short duration from the laser diode, via the fiber core, for amplification by coupling pump light into the inner cladding of the fiber. The average signal power is sufficient to saturate the gain of the fiber so as to minimize significant onset and buildup of forward and backward scattering noise. The duty cycle of the injected signal source pulse is chosen to allow adequate gain recovery in the fiber amplifier between pulses.
    Type: Grant
    Filed: February 2, 1998
    Date of Patent: August 3, 1999
    Assignee: SDL, Inc.
    Inventors: Robert G. Waarts, Steven Sanders, David F. Welch
  • Patent number: 5912910
    Abstract: Laser diode pumped mid-IR wavelength systems include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.
    Type: Grant
    Filed: May 17, 1996
    Date of Patent: June 15, 1999
    Assignee: SDL, Inc.
    Inventors: Steven Sanders, Robert J. Lang, Robert G. Waarts
  • Patent number: 5892615
    Abstract: An optical fiber used as the active amplifying medium in a fiber laser is arranged to have a high insertion loss at an undesired frequency, while retaining a low insertion loss at a desired lasing frequency. In one embodiment, loss at a Raman-shifted frequency is introduced by using an optical fiber which has multiple claddings with an index profile that includes an elevated index region located away from the core, but within the evanescent coupling region of the core. A distributed loss, which can be enhanced by bending, is produced at the Raman frequency which effectively raises the threshold at which Raman scattering occurs in the fiber and therefore results in a frequency-selective fiber. In another embodiment, an absorbing layer is placed around the core region. The absorbing layer is chosen to have a sharp absorption edge so that it absorbs highly at the Raman-shifted wavelength, but minimally at the desired lasing wavelength.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: April 6, 1999
    Assignee: SDL, Inc.
    Inventors: Stephen G. Grubb, Raymond Zanoni, Robert G. Waarts, Jean-Luc Archambault
  • Patent number: 5875053
    Abstract: Several embodiments are described for induced electric field or E-field poling of QPM nonlinear crystal materials, such as LiNbO.sub.3, LiTaO.sub.3 and KTP, utilizing approaches which, for the most part, avoid the necessity of depositing or otherwise forming a series of spatially disposed conductive electrodes on one surface of the nonlinear crystal material. E-field poling is accomplished by applying a high voltage electric field in excess, for example, in the range of several kilovolts per cm to several 100 kilovolts per centimeter, at room temperature to provide inverted domains in a pattern of continuously alternating domains corresponding to the regions formed on the first z surface of the crystal. The employment of single, planar-applied liquid electrodes is preferred eliminating any necessity of forming and removing previously formed metal electrodes in the poling process.
    Type: Grant
    Filed: January 23, 1997
    Date of Patent: February 23, 1999
    Assignee: SDL, Inc.
    Inventors: Jonas Webjorn, Robert G. Waarts, Derek Nam, Donald R. Scifres
  • Patent number: 5867305
    Abstract: Two approaches are provided for achieving an optical amplifier system capable of producing high peak power, high energy pulse outputs while suppressing scattering noise. The first approach relates to an optical amplifier system which has at least one laser diode pulsed or cw pumped double clad fiber amplifier utilized for receiving a high frequency modulated injected signal pulse of short duration from the laser diode, via the fiber core, for amplification by coupling pump light into the inner cladding of the fiber. The average signal power is sufficient to saturate the gain of the fiber so as to minimize significant onset and buildup of forward and backward scattering noise. The duty cycle of the injected signal source pulse is chosen to allow adequate gain recovery in the fiber amplifier between pulses.
    Type: Grant
    Filed: January 19, 1996
    Date of Patent: February 2, 1999
    Assignee: SDL, Inc.
    Inventors: Robert G. Waarts, Steven Sanders, David F. Welch, Donals R. Scifres
  • Patent number: 5790576
    Abstract: Coherent light sources combining a semiconductor optical source with a light diverging region, such as a flared resonator type laser diode or flared amplifier type MOPA, with a single lens adapted to correct the astigmatism of the light beam emitted from the source is disclosed. The lens has an acircular cylindrical or toroidal first surface and an aspheric or binary diffractive second surface. The first surface has a curvature chosen to substantially equalize the lateral and transverse divergences of the astigmatic beam. Sources with an array of light diverging regions producing an array of astigmatic beams and a single astigmatism-correcting lens array aligned with the beams are also disclosed. The single beam source can be used in systems with frequency converting nonlinear optics. The array source can be stacked with other arrays to produce very high output powers with high brightness.
    Type: Grant
    Filed: June 26, 1996
    Date of Patent: August 4, 1998
    Assignee: SDL, Inc.
    Inventors: Robert G. Waarts, Robert J. Lang, Julian S. Osinski, Edmund L. Wolak, John Endriz
  • Patent number: 5677920
    Abstract: An upconversion fiber laser uses a pump source which may be another fiber laser, such as a high power, diode-laser-pumped, fiber laser. The upconversion fiber laser includes an optical fiber whose core region is doped with an active lasing ionic species capable when optically pumped of undergoing upconversion excitation, such as certain rare earth ionic species, and which is embedded in a cladding of the optical fiber. Use of a fiber pump laser can improve coupling of pump light into the optical fiber, thereby achieving higher pump intensities in the core region and improved upconversion efficiency. The upconversion fiber laser's resonant laser cavity is defined by feedback means which can include at least one reflective grating formed in the optical fiber, as well as a reflective end face of the optical fiber.
    Type: Grant
    Filed: December 14, 1995
    Date of Patent: October 14, 1997
    Assignee: SDL, Inc.
    Inventors: Robert G. Waarts, David F. Welch, Steven Sanders, Donald R. Scifres
  • Patent number: 5657153
    Abstract: In an optical transmission medium, such as a fiber amplifier, two optically distinguishable signals with complementary modulation are both inputted into the amplifying medium for encoding information, particularly a serial stream of digital data, or alternatively, redundant encoding of pulses. The gain profile in the medium is preferably maintained approximately constant at all times, so that whichever amplified signal is used as the primary information carrier, its output intensity will be substantially stable from pulse to pulse, independent of recent pulse history. The two complementary signals may have different orthogonal linear polarizations or wavelengths with the same stimulated emission cross-section, so that the population inversion profile stays constant, whichever signal happens to be on at a given moment.
    Type: Grant
    Filed: March 21, 1995
    Date of Patent: August 12, 1997
    Assignee: SDL, Inc.
    Inventors: John Endriz, David F. Welch, Robert G. Waarts, Steven Sanders, Donald R. Scifres
  • Patent number: 5654229
    Abstract: A method for providing an nonlinear, frequency converting optical QPM waveguide device by growing a first ferroelectric oxide film or layer on a second ferroelectric layer or medium wherein, in first and second embodiments, respectively, the second layer is initially provided with a periodic nonlinear coefficient pattern or a periodic pattern comprising a seed layer. During the growth of the first layer, the periodic pattern formed in the second layer, is replicated, transformed or induced into the first layer resulting in a plurality of substantially rectangular prismatic-shaped domains in the first layer having the periodic nonlinear coefficient pattern status based upon the periodic patterning of the second layer.
    Type: Grant
    Filed: April 26, 1995
    Date of Patent: August 5, 1997
    Assignee: Xerox Corporation
    Inventors: Florence E. Leplingard, John J. Kingston, Ross D. Bringans, David K. Fork, Robert G. Waarts, David F. Welch, Randall S. Geels
  • Patent number: 5644584
    Abstract: A harmonic generator laser system which features a distributed Bragg reflector (DBR) or distributed feedback (DFB) tunable diode laser coupled to a quasi-phasematched (QPM) waveguide of optically nonlinear material. Tuning of the DBR laser may be achieved either thermally or via current injection, or both, halving the wavelength of a red laser into the visible blue spectral band. Thermal tuning may provide a coarse tuning adjustment, while injected current may provide fine tuning accessible to a user. Separately or in combination with current tuning, a modulation signal may be applied to the DBR laser for achieving an intensity modulated or a pulsed output. In another embodiment, modulation may be achieved by frequency modulation of the laser. A very compact tunable blue laser is formed. In yet another embodiment a double clad fiber amplifier is disposed between the tunable laser and the waveguide.
    Type: Grant
    Filed: March 29, 1996
    Date of Patent: July 1, 1997
    Assignee: SDL, Inc.
    Inventors: Derek W. Nam, David F. Welch, Robert G. Waarts, Jo S. Major
  • Patent number: 5539571
    Abstract: An optical amplifier semiconductor device which is differentially pumped and a master oscillator power amplifier (MOPA) device employing such an amplifier. The amplifier allows the light propagating therein to diverge along at least part of its length, and may be a flared amplifier having a gain region that increases in width toward its output at a rate that equals or exceeds the divergence of the light. The amplifier is pumped with a current density at its input end which is smaller than the current density used to pump the output end for maintaining coherence of the beam to high power levels. Differential pumping may be both longitudinal and lateral within the amplifier. A single mode preamplifier section may be optically coupled to the input end of the amplifier. The amplifier input may have a width which is the same as or wider than that of the preamplifier output. The preamplifier may have a constant mode width or may be tapered to alter the divergence of the beams provided to the amplifier section.
    Type: Grant
    Filed: February 28, 1994
    Date of Patent: July 23, 1996
    Assignee: SDL, Inc.
    Inventors: David F. Welch, Donald R. Scifres, Robert G. Waarts, David G. Mehuys, Amos A. Hardy, Ross A. Parke
  • Patent number: 5530709
    Abstract: An upconversion fiber laser with a double-clad fiber is pumped with a laser-diode-based laser pump source, the inner cladding of the fiber forming a low transmission loss waveguide for the pump light. The central core of the fiber is doped with an active lasing ionic species capable of undergoing upconversion excitation, such as certain rare earth ionic species. The use of a double-clad fiber permits the use of high power, high brightness laser diodes, including those with broad emitting apertures, as well as high power diode laser pumped fiber lasers, as the pump source, thereby achieving higher pump intensities within the upconversion laser fiber and improved upconversion efficiency. Pump brightness can be further increased with multiple pump schemes which use multiple pump wavelengths in different absorption bands, multiple pump wavelengths within the same absorption band, pump light from pairs of cross-polarized sources, and pumping from both ends of the fiber.
    Type: Grant
    Filed: September 6, 1994
    Date of Patent: June 25, 1996
    Assignee: SDL, Inc.
    Inventors: Robert G. Waarts, David F. Welch, Steven Sanders, Donald R. Scifres
  • Patent number: 5440576
    Abstract: A phased array of flared amplifiers fed by phase adjusters and a power splitter produces a single high power beam when the flared amplifier sections are aligned and closely spaced. In one embodiment the array is excited by a DBR laser integrated into the same substrate as the flared amplifiers. In another embodiment the array is self-excited and forms a laser between an edge of the substrate common to the power splitter and an edge of the substrate common to the flared amplifier.
    Type: Grant
    Filed: April 18, 1994
    Date of Patent: August 8, 1995
    Assignee: SDL, Inc.
    Inventors: David F. Welch, Robert J. Lang, Julian S. Osinski, Kenneth M. Dzurko, David G. Mehuys, Robert G. Waarts
  • Patent number: RE35215
    Abstract: A compact semiconductor laser light source providing short wavelength (ultraviolet, blue or green) coherent light by means of frequency doubling of red or infrared light from a high power diode heterostructure. The high power diode heterostructure is a MOPA device having a single mode laser oscillator followed by a multimode, preferably flared, optical power amplifier. A tunable configuration having an external rear reflector grating could also be used. A lens could be integrated with the MOPA to laterally collimate the light before it is emitted. Straight or curved, surface emitting gratings could also be incorporated. An astigmatism-correcting lens system having at least one cylindrical lens surface is disposed in the path of the output from the MOPA to provide a beam with substantially equal lateral and transverse beam width dimensions and beam divergence angles. A nonlinear optical crystal or waveguide is placed in the path of the astigmatism-free symmetrized beam to double the frequency of the light.
    Type: Grant
    Filed: September 16, 1994
    Date of Patent: April 23, 1996
    Assignee: SDL, Inc.
    Inventors: Robert G. Waarts, David F. Welch, Donald R. Scifres, Robert J. Lang, Derek W. Nam