Patents by Inventor Robert G. Waarts

Robert G. Waarts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5159604
    Abstract: In a semiconductor laser array structure in which antiguided regions between high effective refractive index waveguide regions experience greater gain then the waveguide regions, structures introduced at the sides of the array, next to the edgemost waveguides and not on the array period, reflect laterally transmitted radiation back toward the center of the array. The edge reflecting structures may be waveguide regions having widths of (m'+1/2) half-wavelengths, where "m'" is zero or a positive integer, compared to array waveguides with width m, where "m" is an integer not necessarily equal to "m'". The edge reflecting structures may also be stacks of such waveguides, where the regions between the edge waveguides are of a width substantially equal to (n'+1/2) half-wavelengths, compared to antiguide element widths of n half-wavelengths. The two integers n and n' may be, but are not necessarily, equal.
    Type: Grant
    Filed: July 29, 1991
    Date of Patent: October 27, 1992
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: David G. Mehuys, Amos A. Hardy, David F. Welch, Robert G. Waarts, Donald R. Scifres
  • Patent number: 5033054
    Abstract: A laser having a phase conjugating reflector positioned with a resonant cavity of a laser configuration capable of multimode operation. The resonant cavity or other means associated with the laser configuration selects the preferred mode at threshold. The phase conjugating material builds up reflectivity as the light intensity is increased above threshold power levels to maintain the selected mode to high power levels. One embodiment has an external Talbot cavity with a first mirror in a Talbot plane of a multi-emitter laser array and with the phase conjugating material at a sub-Talbot plane. Another embodiment has an external GRIN lens cavity with a far field apertured stripe mirror for threshold mode selection. The phase conjugator is placed at a high light intensity position within the cavity such as adjacent to the stripe mirror or adjacent to the laser array. The laser source may be a linear laser diode array or a 2-D surface emitting laser array.
    Type: Grant
    Filed: August 17, 1990
    Date of Patent: July 16, 1991
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: Donald R. Scifres, Richard R. Craig, Robert G. Waarts
  • Patent number: 5003550
    Abstract: A monolithic integrated master oscillator power amplifier (MOPA) device including a single mode diode laser with distributed Bragg reflectors, an amplifier in tandem with the laser, lateral phase controllers and a detuned second order grating surface output coupler, all on a common substrate. The amplifier is a flared waveguide in one embodiment, and a branching network of single mode waveguides followed by an array of single mode gain waveguides in another embodiment. The diode laser is tunable by means of a separate tuning current applied to the rear Bragg reflector. Tuning the laser wavelength provides, in conjunction with the output coupler, a longitudinal steering of the output beam. The lateral phase controllers are an array of separately addressable electrodes that adjust the optical path length to compensate for phase variation in the amplifiers and also to provide lateral steering of the output beam.
    Type: Grant
    Filed: March 9, 1990
    Date of Patent: March 26, 1991
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: David F. Welch, Robert G. Waarts, David G. Mehuys, Richard R. Craig
  • Patent number: 4995050
    Abstract: A diode laser external lens cavity configuration having a stripe mirror with two thin parallel stripes placed in front of the two lobes of the arrays for far field output pattern. The configuration includes a diode laser array or broad area laser, a lens system, such as a graded-index lens, disposed in front of the laser's front light emitting facet and the stripe mirror disposed in front of the lens system at the focal plane of the lens. The two stripes are parallel to one another on opposite sides of and equidistant from a vertical reference plane through the lens' center axis. One stripe is highly reflective, while the other is effectively only partially reflective having either a lower stripe reflectivity or shorter length than the first stripe. Other embodiments include a third stripe spaced from and collinear with the second stripe to form an etalon, and a grating in the cavity.
    Type: Grant
    Filed: November 17, 1989
    Date of Patent: February 19, 1991
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: Robert G. Waarts, William Streifer, Donald R. Scifres
  • Patent number: 4972427
    Abstract: A diode laser of the type having an array of laser emitters in a Talbot cavity in which edge reflectors are added to enhance feedback to edgemost emitters. In one embodiment, a transparent slab with reflectively coated sides is present between the phase plane of the emitted light and the Talbot cavity reflector. The phase plne is defined by a lenticular array placed a focal length in front of the laser emitters. In another embodiment, the Talbot cavity reflector has an increased reflectivity toward its edges. In all embodiments the Talbot cavity reflector is preferably spaced a distance na.sup.2 /.lambda. from the phase plane, where n is a positive integer, a is separation between adjacent emitters and .lambda. is the wavelength of emitted light. An integrated embodiment has the array and cavity reflectors defined ina single semiconductor body divided into active and ransparent region. Side mirrors are etched into the semiconductor body.
    Type: Grant
    Filed: September 14, 1989
    Date of Patent: November 20, 1990
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: William Streifer, Robert G. Waarts, David F. Welch, Donald R. Scifres