Patents by Inventor Robert G. Weiss

Robert G. Weiss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10987501
    Abstract: Certain embodiments according to the present invention provide sleeve devices suitable for a wide range of therapeutic uses. In accordance with certain embodiments, the therapeutic sleeve device includes a nanofiber fabric assembly, which defines a plurality of pores, and at least one layer of cells embedded in the nanofiber fabric assembly.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: April 27, 2021
    Assignee: The Johns Hopkins University
    Inventors: Chao-Wei Hwang, Zhiyong Xia, Virginia E. Bogdan, Jeffrey A. Brinker, Gary Gerstenblith, Peter V. Johnston, Steven P. Schulman, Gordon Tomaselli, Robert G. Weiss
  • Publication number: 20200297474
    Abstract: The present invention provides an implantable bioreactor comprising cells enclosed within an enclosure, said cells being capable of producing paracrine factors, wherein the enclosure is collapsible or expandable or both or neither, wherein the enclosure is semipermeable such that it provides containment of the cells preventing the egress of the cells while further providing a barrier that shields the cells from immunological attack, and wherein the enclosure is permeable to the entire secretome of the cell including exosomes, nucleic acids and proteins. The implantable bioreactor can have various configurations and can house internally a cell culture matrix than can include hydrogels, microbeads, and nanofiber matrices along with other active agents.
    Type: Application
    Filed: October 5, 2018
    Publication date: September 24, 2020
    Inventors: Chao-Wei Hwang, Peter Johnston, Gary Gerstenblith, Robert G. Weiss, Gordon Tomaselli, Steven Schulman
  • Patent number: 10772716
    Abstract: A method for promoting healing of tissue by delivering a bioreactor into a subject is provided. The bioreactor is an enclosed housing with paracrine factor producing cells enclosed within the housing. The housing is impermeable to the paracrine factor producing cells, impermeable to immunological cells outside of the housing, and permeable to paracrine factors produced by the paracrine factor producing cells. The paracrine factors produced by the paracrine factor producing cells are released out of the housing to promote healing of the tissue.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: September 15, 2020
    Assignee: The Johns Hopkins University
    Inventors: Gary Gerstenblith, Jason Benkoski, George Coles, Chao-Wei Hwang, Peter Johnston, Gordon Tomaselli, Robert G. Weiss, Steven P. Schulman, Jeffrey A. Brinker
  • Publication number: 20200147358
    Abstract: Certain embodiments according to the present invention provide sleeve devices suitable for a wide range of therapeutic uses. In accordance with certain embodiments, the therapeutic sleeve device includes a nanofiber fabric assembly, which defines a plurality of pores, and at least one layer of cells embedded in the nanofiber fabric assembly.
    Type: Application
    Filed: December 27, 2019
    Publication date: May 14, 2020
    Inventors: Chao-Wei Hwang, Zhiyong Xia, Virginia E. Bogdan, Jeffrey A. Brinker, Gary Gerstenblith, Peter V. Johnston, Steven P. Schulman, Gordon Tomaselli, Robert G. Weiss
  • Patent number: 10561830
    Abstract: Certain embodiments according to the present invention provide sleeve devices suitable for a wide range of therapeutic uses. In accordance with certain embodiments, the therapeutic sleeve device includes a nanofiber fabric assembly, which defines a plurality of pores, and at least one layer of cells embedded in the nanofiber fabric assembly.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: February 18, 2020
    Assignee: The Johns Hopkins University
    Inventors: Chao-Wei Hwang, Zhiyong Xia, Virginia E. Bogdan, Jeffrey A. Brinker, Gary Gerstenblith, Peter V. Johnston, Steven P. Schulman, Gordon Tomaselli, Robert G. Weiss
  • Publication number: 20190314416
    Abstract: A method for promoting healing of tissue by delivering a bioreactor into a subject is provided. The bioreactor is an enclosed housing with paracrine factor producing cells enclosed within the housing. The housing is impermeable to the paracrine factor producing cells, impermeable to immunological cells outside of the housing, and permeable to paracrine factors produced by the paracrine factor producing cells. The paracrine factors produced by the paracrine factor producing cells are released out of the housing to promote healing of the tissue.
    Type: Application
    Filed: February 21, 2019
    Publication date: October 17, 2019
    Inventors: Gary Gerstenblith, Jason Benkoski, George Coles, Chao-Wei Hwang, Peter Johnston, Gordon Tomaselli, Robert G. Weiss, Steven P. Schulman
  • Patent number: 10209330
    Abstract: A method of performing spatially localized magnetic resonance spectroscopy includes receiving a magnetic resonance image of an object; identifying a plurality C of compartments that generate magnetic resonance spectroscopy signals in the object including at least one compartment of interest; segmenting in at least one spatial dimension the magnetic resonance image of the object into the C compartments; acquiring magnetic resonance spectroscopy signals from the compartments by applying a plurality of M? phase encodings applied in the at least one spatial dimension, wherein M??C; calculating a spatially localized magnetic resonance chemical shift spectrum from the at least one compartment of interest; and rendering a spatially localized magnetic resonance spectrum that is substantially equal to a spatial average of magnetic resonance chemical shift spectra from the at least one compartment of interest. A magnetic resonance spectroscopy and imaging system is configured to perform the above method.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: February 19, 2019
    Assignee: The Johns Hopkins University
    Inventors: Paul A. Bottomley, Refaat Gabr, Yi Zhang, Robert G. Weiss
  • Publication number: 20170245976
    Abstract: An implantable bioreactor containing a barrier which is designed to allow the release of cell-derived biomolecules, but restricts the entry of immunologic and other cells, or the egress of the cells contained within the bioreactor. Two broad classes of implantable bioreactors are envisioned, encompassing devices for both systemic delivery of the bio-products and local delivery at the target tissue. Bioreactors of both classes can be implanted via surgery, through percutaneous techniques, or other techniques which effect implantation.
    Type: Application
    Filed: March 23, 2017
    Publication date: August 31, 2017
    Inventors: Gary Gerstenblith, Jason Benkoski, Jeffrey Brinker, George Coles, Chao-Wei Hwang, Peter Johnston, Gordon Tomaselli, Robert G. Weiss, Steven P. Schulman
  • Publication number: 20160235956
    Abstract: Certain embodiments according to the present invention provide sleeve devices suitable for a wide range of therapeutic uses. In accordance with certain embodiments, the therapeutic sleeve device includes a nanofiber fabric assembly, which defines a plurality of pores, and at least one layer of cells embedded in the nanofiber fabric assembly.
    Type: Application
    Filed: October 7, 2014
    Publication date: August 18, 2016
    Inventors: Chao-Wei Hwang, Zhiyong Xia, Virginia E. Bogdan, Jeffrey A. Brinker, Gary Gerstenblith, Peter V. Johnston, Steven P. Schulman, Gordon Tomaselli, Robert G. Weiss
  • Publication number: 20150217030
    Abstract: Certain embodiments according to the present invention provide a method for forming medical devices conformally coated with a hydrogel having a wide variety of therapeutic uses. In one aspect, certain embodiments of the invention provide a method for forming a hydrogel-coated medical device comprising immersing a medical device in a polymer solution to form an adhesive layer on an outer surface of the medical device and contacting the medical device with a hydrogel precursor solution having a pH of less than 7 to react the adhesive layer with the hydrogel precursor solution and form a conformal hydrogel coating.
    Type: Application
    Filed: February 5, 2015
    Publication date: August 6, 2015
    Inventors: Jason J. Benkoski, Peter V. Johnston, Chao-Wei Hwang, Gary Gerstenblith, Robert G. Weiss, Gordon Tomaselli, Steven P. Schulman, Jeffrey A. Brinker
  • Publication number: 20120083767
    Abstract: An implantable bioreactor containing a barrier which is designed to allow the release of cell-derived biomolecules, but restricts the entry of immunologic and other cells, or the egress of the cells contained within the bioreactor. Two broad classes of implantable bioreactors are envisioned, encompassing devices for both systemic delivery of the bio-products and local delivery at the target tissue. Bioreactors of both classes can be implanted via surgery, through percutaneous techniques, or other techniques which effect implantation.
    Type: Application
    Filed: October 3, 2011
    Publication date: April 5, 2012
    Applicant: The Johns Hopkins University
    Inventors: Gary Gerstenblith, Jason Benkoski, Jeffrey Brinker, George Coles, Chao-Wei Hwang, Peter Johnston, Gordon Tomaselli, Robert G. Weiss, Steven P. Schulman