Patents by Inventor Robert John Zabala

Robert John Zabala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9649659
    Abstract: A method for joining a filler material to a substrate material includes melting the filler material within a melting chamber of a crucible such that the filler material is molten. The crucible has an outlet fluidly connected to the melting chamber. The method also includes holding the filler material within the melting chamber of the crucible by applying a first pressure differential across the outlet of the crucible, and releasing the filler material from the melting chamber of the crucible by applying a second pressure differential across the outlet of the crucible to deliver the filler material to a target site of the substrate material. The second pressure differential has a different value than the first pressure differential.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: May 16, 2017
    Assignee: General Electric Company
    Inventors: Qi Zhao, Robert John Zabala, Laurent Cretegny, Jeffrey Jon Schoonover, Mark Kevin Meyer, Keith Anthony Lauria, William R Catlin
  • Patent number: 9287485
    Abstract: Method for joining wires using low resistivity joints is provided. More specifically, methods of joining one or more wires having superconductive filaments, such as magnesium diboride filaments, are provided. The wires are joined by a low resistivity joint to form wires of a desired length for applications, such in medical imaging applications.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: March 15, 2016
    Assignee: General Electric Company
    Inventors: Judson Sloan Marte, Xianrui Huang, Evangelos Trifon Laskaris, Bruce Alan Knudsen, Thomas Robert Raber, Robert John Zabala, James William Bray, Paul Shadforth Thompson, Sergio Paulo Martins Loureiro, Curtis Alan Johnson, Sylvia Marie Decarr
  • Publication number: 20160016196
    Abstract: A method for joining a filler material to a substrate material includes melting the filler material within a melting chamber of a crucible such that the filler material is molten. The crucible has an outlet fluidly connected to the melting chamber. The method also includes holding the filler material within the melting chamber of the crucible by applying a first pressure differential across the outlet of the crucible, and releasing the filler material from the melting chamber of the crucible by applying a second pressure differential across the outlet of the crucible to deliver the filler material to a target site of the substrate material. The second pressure differential has a different value than the first pressure differential.
    Type: Application
    Filed: September 28, 2015
    Publication date: January 21, 2016
    Inventors: Qi ZHAO, Robert John ZABALA, Laurent CRETEGNY, Jeffrey Jon SCHOONOVER, Mark Kevin MEYER, Keith Anthony LAURIA, William R. CATLIN
  • Patent number: 9144822
    Abstract: A method is provided for joining a filler material to a substrate material. The method includes melting the filler material within a melting chamber of a crucible such that the filler material is molten. The crucible has an outlet fluidly connected to the melting chamber. The method also includes holding the filler material within the melting chamber of the crucible by applying a first pressure differential across the outlet of the crucible, and releasing the filler material from the melting chamber of the crucible by applying a second pressure differential across the outlet of the crucible to deliver the filler material to a target site of the substrate material. The second pressure differential has a different value than the first pressure differential.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: September 29, 2015
    Assignee: General Electric Company
    Inventors: Qi Zhao, Robert John Zabala, Laurent Cretegny, Jeffrey Jon Schoonover, Mark Kevin Meyer, Keith Anthony Lauria, William R Catlin
  • Patent number: 8876481
    Abstract: A turbine airfoil component assembly for use with a turbine engine including a attachment assembly having an inner surface defining a cavity. The attachment assembly includes a metal alloy substrate. An airfoil assembly is at least partially positioned within the attachment assembly and extends outwardly from the attachment assembly. The airfoil assembly includes a ceramic matrix composite (CMC) substrate. A reaction barrier coating is disposed over at least a portion of the airfoil assembly. The reaction barrier coating is positioned between the attachment assembly and the airfoil assembly.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: November 4, 2014
    Assignee: General Electric Company
    Inventors: Shyh-Chin Huang, Frederic Joseph Klug, Robert John Zabala, Andrea Jeanne Howard, Toby George Darkins, Jr.
  • Publication number: 20140093658
    Abstract: A method is provided for joining a filler material to a substrate material. The method includes melting the filler material within a melting chamber of a crucible such that the filler material is molten, holding the filler material within the melting chamber of the crucible by electromagnetically levitating the filler material within the melting chamber, and releasing the filler material from the melting chamber of the crucible to deliver the filler material to a target site of the substrate material.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: General Electric Company
    Inventors: Qi Zhao, Robert John Zabala, Laurent Cretegny, Jeffrey Jon Schoonover, Mark Kevin Meyer, Keith Anthony Lauria, William R. Catlin
  • Publication number: 20140093657
    Abstract: A method is provided for joining a filler material to a substrate material. The method includes melting the filler material within a melting chamber of a crucible such that the filler material is molten. The crucible has an outlet fluidly connected to the melting chamber. The method also includes holding the filler material within the melting chamber of the crucible by applying a first pressure differential across the outlet of the crucible, and releasing the filler material from the melting chamber of the crucible by applying a second pressure differential across the outlet of the crucible to deliver the filler material to a target site of the substrate material. The second pressure differential has a different value than the first pressure differential.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: General Electric Company
    Inventors: Qi Zhao, Robert John Zabala, Laurent Cretegny, Jeffrey Jon Schoonover, Mark Kevin Meyer, Keith Anthony Lauria, William R. Catlin
  • Publication number: 20120171039
    Abstract: A turbine airfoil component assembly for use with a turbine engine including a attachment assembly having an inner surface defining a cavity. The attachment assembly includes a metal alloy substrate. An airfoil assembly is at least partially positioned within the attachment assembly and extends outwardly from the attachment assembly. The airfoil assembly includes a ceramic matrix composite (CMC) substrate. A reaction barrier coating is disposed over at least a portion of the airfoil assembly. The reaction barrier coating is positioned between the attachment assembly and the airfoil assembly.
    Type: Application
    Filed: January 5, 2011
    Publication date: July 5, 2012
    Inventors: Shyh-Chin Huang, Frederic Joseph Klug, Robert John Zabala, Andrea Jeanne Howard, Toby George Darkins, JR.
  • Publication number: 20120165200
    Abstract: Method for joining wires using low resistivity joints is provided. More specifically, methods of joining one or more wires having superconductive filaments, such as magnesium diboride filaments, are provided. The wires are joined by a low resistivity joint to form wires of a desired length for applications, such in medical imaging applications.
    Type: Application
    Filed: March 9, 2012
    Publication date: June 28, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Judson Sloan Marte, Xianrui Huang, Evangelos Trifon Laskaris, Bruce Alan Knudsen, Thomas Robert Raber, Robert John Zabala, James William Bray, Paul Shadforth Thompson, Sergio Paulo Martins Loureiro, Curtis Alan Johnson, Sylvia Marie Decarr
  • Publication number: 20080236869
    Abstract: Method for joining wires using low resistivity joints is provided. More specifically, methods of joining one or more wires having superconductive filaments, such as magnesium diboride filaments, are provided. The wires are joined by a low resistivity joint to form wires of a desired length for applications, such in medical imaging applications.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Inventors: Judson Sloan Marte, Xianrui Huang, Evangelos Trifon Laskaris, Bruce Alan Knudsen, Thomas Robert Raber, Robert John Zabala, James William Bray, Paul Shadforth Thompson, Sergio Paulo Martins Loureiro, Curtis Alan Johnson, Sylvia Marie Decarr
  • Patent number: 7319327
    Abstract: A Magnetic Resonance Imaging (MRI) system having a vacuum vessel positioned about an imaging volume, one or more high temperature superconducting coils positioned within the vacuum vessel, and a cryocooler coupled to the vacuum vessel to operate the superconducting coil at a temperature above 10 K. At least one gradient coil is positioned between an imaging volume and the superconducting coil without any thermal shielding interposed between the gradient coil and the superconducting coil. A method of forming an MRI system includes forming at least one winding of the main field generating coils with high temperature superconducting material, positioning the winding in a vessel for receiving cryogenic fluid, and positioning a gradient coil between the imaging volume and the winding without placing a thermal radiation shield between the gradient coil and the winding.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: January 15, 2008
    Assignee: General Electric Company
    Inventors: J. Anne Ryan, legal representative, Evangelos Trifon Laskaris, Kathleen Melanie Amm, Bruce Alan Knudsen, Judson Sloan Marte, Thomas Robert Raber, Robert John Zabala, James William Bray, Bruce Campbell Amm, Sergio Paulo Martins Loureiro, David Thomas Ryan, deceased
  • Patent number: 7226894
    Abstract: Disclosed herein is method for making a wire comprising contacting a first end of a first superconducting wire with a second end of a second superconducting wire, wherein the superconducting wire comprises a superconducting filament having a superconducting composition comprising magnesium diboride; heating the first end of the first superconducting wire with the second end of the second superconducting wire at a point to form a joint, wherein the superconducting filament having the superconducting composition is in continuous electrical contact with any other part of the superconducting filament after the formation of the joint.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: June 5, 2007
    Assignee: General Electric Company
    Inventors: Thomas Robert Raber, Judson Sloan Marte, Evangelos Trifon Laskaris, Sergio Martins Loureiro, Robert John Zabala, Bruce Alan Knudsen, Kathleen Melanie Amm, Bruce Campbell Amm, James William Bray
  • Patent number: 7144441
    Abstract: A method for forming a dispersion-strengthened material containing nanoparticles that are uniformly dispersed in a matrix phase. The method includes adding nanoparticles and a molten material to a container to form a pool within the container and rotating the container to create a convection vortex in the pool. The convection vortex is sufficient to cause the nanoparticles to be incorporated into the molten material so as to yield a molten composite material, and further causes the molten composite material to be ejected from the container. The molten composite material is then cooled to form a solid composite body comprising a uniform dispersion of the nanoparticles.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: December 5, 2006
    Assignee: General Electric Company
    Inventors: Shyh-Chin Huang, Pazhayannur Ramanathan Subramanian, Robert John Zabala, Roger John Petterson, Eric Allen Ott, Srinivasa Range Gowda
  • Publication number: 20040114666
    Abstract: A gas turbine engine comprises (A) a turbine including a nozzle and shroud assembly supported within the engine; the nozzle and shroud assembly including an inner annular ring member, an outer annular ring structure and a plurality of airfoils being positioned between the inner and outer ring structure, wherein at least one of the airfoils of the plurality comprises; (i) a substrate comprising a first electrically conducting material; and (ii) a wire of dissimilar electrically conducting material extending a measured distance in intimate contact with the substrate at a reference point and electrically insulated to a measuring point.
    Type: Application
    Filed: December 17, 2002
    Publication date: June 17, 2004
    Inventors: Canan Uslu Hardwicke, Melvin Robert Jackson, Michael Francis Xavier Gigliotti, Stephen F. Rutkowski, Robert John Zabala
  • Publication number: 20040086708
    Abstract: Soft magnetic composites having a high compressibility and a high permeability are described. These two characteristics are obtained by combining high compressibility iron powder to high permeability powders. The iron powder is of a high compressibility and in a size range and proportion that results in a powder mass amenable to compaction by industrially viable and cost-effective compaction process such as uniaxial cold compaction. The high compressibility iron powder helps achieve high relative density and also allows easy path for the passage of magnetic flux.
    Type: Application
    Filed: November 4, 2002
    Publication date: May 6, 2004
    Applicant: General Electric Company
    Inventors: Amitabh Verma, Luana Emiliana Iorio, K. Anand, Srinidhi Sampath, Robert John Zabala, Kanchan Kumari, Geetha Karavoor
  • Patent number: 6631753
    Abstract: A casting system and method for producing a metal casting is provided. The metal casting can comprise a fine-grain, homogeneous microstructure that is essentially oxide- and sulfide-free, segregation defect free, and essentially free of voids caused by air entrapped during solidification of the metal from a liquidus state to a solid state. The casting system can comprise an electroslag refining system; a nucleated casting system; and a cooling system that cools the metal casting so as to cool a liquidus portion of the metal casting. The metal casting is cooled in a manner sufficient to provide a microstructure that comprises a fine-grain, homogeneous microstructure that is essentially oxide- and sulfide-free, segregation defect free, and essentially free of voids caused by air entrapped during solidification from a liquidus state to a solid state.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: October 14, 2003
    Assignee: General Electric Company
    Inventors: William Thomas Carter, Jr., Mark Gilbert Benz, Robert John Zabala, Bruce Alan Knudsen
  • Patent number: 6558446
    Abstract: An electroslag refining apparatus includes upper and lower integral crucibles, with the lower crucible having a drain. In situ hot start is effected by depositing in the lower crucible a pre-refined starter. The starter is melted in the lower crucible to form a starter pool, and slag is deposited atop the starter pool for being melted thereby to develop a slag pool thereatop. An ingot electrode is lowered through the upper crucible to immerse a tip thereof into the slag pool. The electrode is powered to effect resistance heating of the slag pool to melt the electrode tip. The slag and starter pools are increased in volume into the upper crucible, with the drain then being opened to effect steady state operation.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: May 6, 2003
    Assignee: General Electric Company
    Inventors: Mark Gilbert Benz, William Thomas Carter, Jr., Robert John Zabala, Bruce Alan Knudsen
  • Publication number: 20030075010
    Abstract: An electroslag refining apparatus includes upper and lower integral crucibles, with the lower crucible having a drain. In situ hot start is effected by depositing in the lower crucible a pre-refined starter. The starter is melted in the lower crucible to form a starter pool, and slag is deposited atop the starter pool for being melted thereby to develop a slag pool thereatop. An ingot electrode is lowered through the upper crucible to immerse a tip thereof into the slag pool. The electrode is powered to effect resistance heating of the slag pool to melt the electrode tip. The slag and starter pools are increased in volume into the upper crucible, with the drain then being opened to effect steady state operation.
    Type: Application
    Filed: October 22, 2001
    Publication date: April 24, 2003
    Inventors: Mark Gilbert Benz, William Thomas Carter, Robert John Zabala, Bruce Alan Knudsen
  • Publication number: 20030034379
    Abstract: A method of repairing cracks, imperfections, and the like in a cast article of superalloy composition having a directionally oriented microstructure and growth axis. An aperture, usually frustois created in the article in the location of the crack or imperfection. A plug, having a second directionally oriented microstructure having a directional microstructure with a growth axis and a superalloy composition substantially identical to the article superalloy composition, is created. Such plug further possesses an inner end, an outer end, and a surface therebetween. The plug is inserted into the aperture whereby the plug growth axis is oriented in alignment with the article growth axis. Bonding material is applied between the surfaces of the plug and the aperture, before or after insertion of the plug into the aperture. The article is thereafter heated such that the bonding material joins the surface of the plug and the aperture.
    Type: Application
    Filed: August 16, 2001
    Publication date: February 20, 2003
    Inventors: Melvin Robert Jackson, Michael Francis Xavier Gigliotti, Ann Melinda Ritter, Lee Cranford Perocchi, Robert John Zabala
  • Patent number: 6505526
    Abstract: An inspection apparatus for water flow testing of cooling passageways in gas turbine buckets provides observable visual determination of whether any blockages were formed during the manufacturing or refurbishing processes. The inspection apparatus includes a manifold block and manifold control valve mounted on a platform and adapted to engage the root end of a turbine bucket and supply fluid therethrough. The turbine bucket is affixed to the platform with a holder. The fluid exiting at the tip of the turbine bucket is visible and any blockages in the passageways will be easily discerned by the absence or paucity of fluid flow at the tip. Fluid is supplied to the manifold block by a pressure regulated fluid supply line with a control valve and a flow meter. An air supply line is also connected to the manifold block to supply air through the passageways to remove residual fluid from the bucket.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: January 14, 2003
    Assignee: General Electric Company
    Inventors: Robert John Zabala, Bruce Alan Knudsen