Patents by Inventor Robert Michael Morena

Robert Michael Morena has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170320773
    Abstract: In embodiments, a delamination resistant glass pharmaceutical package includes a glass body formed from a Type 1 Class glass composition according to ASTM Standard E438-92, the glass body having a wall portion with an inner surface and an outer surface. The glass body may have at least a class A2 base resistance or better according to ISO 695, at least a type HGB2 hydrolytic resistance or better according to ISO 719 and Type 1 chemical durability according to USP <660>. An interior region of the glass body may extend from about 10 nm below the inner surface and having a persistent layer homogeneity. The glass body may also have a surface region extending over the inner surface and having a persistent surface homogeneity such that the glass body is resistant to delamination.
    Type: Application
    Filed: July 21, 2017
    Publication date: November 9, 2017
    Applicant: CORNING INCORPORATED
    Inventors: Dana Craig Bookbinder, Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren
  • Patent number: 9809487
    Abstract: A silicate glass that is tough and scratch resistant. The toughness is increased by minimizing the number of non-bridging oxygen atoms in the glass. In one embodiment, the silicate glass is an aluminoborosilicate glass in which ?15 mol %?(R2O+R?O—Al2O3—ZrO2)—B2O3?4 mol %, where R is one of Li, Na, K, Rb, and Cs, and R? is one of Mg, Ca, Sr, and Ba.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: November 7, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Matthew John Dejneka, Adam James Ellison, Sinue Gomez, Robert Michael Morena
  • Publication number: 20170283308
    Abstract: A scratch resistant alkali aluminoborosilicate glass. The glass is chemically strengthened and has a surface layer that is rich in silica with respect to the remainder of the glass article. The chemically strengthened glass is then treated with an aqueous solution of a mineral acid other than hydrofluoric acid, such as, for example, HCl, HNO3, H2SO4, or the like, to selective leach elements from the glass and leave behind a silica-rich surface layer. The silica-rich surface layer improves the Knoop scratch threshold of the ion exchanged glass compared to ion exchanged glass that are not treated with the acid solution as well as the post-scratch retained strength of the glass.
    Type: Application
    Filed: May 3, 2017
    Publication date: October 5, 2017
    Inventors: Sinue Gomez, Robert Michael Morena, Douglas Miles Noni, JR., James Joseph Price, Sara Jean Sick
  • Patent number: 9718721
    Abstract: According to one embodiment, a glass composition may include from 67 mol. % to about 75 mol. % SiO2; from about 6 mol. % to about 10 mol. % Al2O3; and from about 5 mol. % to about 12 mol. % alkali oxide. The alkali oxide may include K2O in an amount less than or equal to 0.5 mol. %. The glass composition may further include from about 9 mol. % to about 15 mol. % of alkaline earth oxide. The alkaline earth oxide may include greater than about 0 mol. % and less than or equal to 3 mol. % MgO, from 2 mol. % to about 7 mol % CaO, at least one of SrO and BaO. The glass composition may further include less than 1 mol. % B2O3. A ratio of a concentration of MgO to the sum of the concentration of divalent cations (MgO:?RO) may be less than 0.3.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: August 1, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Melinda Ann Drake, Robert Michael Morena
  • Publication number: 20170197869
    Abstract: A group of glass compositions in the Li2O—Al2O3—SiO2—B2O3 family that can be chemically strengthened in single or multiple ion exchange baths containing at least one of NaNO3 and KNO3 for a short time (2-4 hours) to develop a deep depth of layer (DOL). In some instances, the DOL is at least 70 ?m; in others, at least about 100 ?m. The ion exchanged glasses have a high damage resistance (indentation fracture toughness ranging form greater than 10 kgf to greater than 50 kgf) that is better than or at least comparable to that of sodium aluminosilicate glasses.
    Type: Application
    Filed: January 6, 2017
    Publication date: July 13, 2017
    Inventors: George Halsey Beall, Matthew John Dejneka, Sinue Gomez, Qiang Fu, Robert Michael Morena, Charlene Marie Smith
  • Publication number: 20170174555
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Application
    Filed: March 3, 2017
    Publication date: June 22, 2017
    Applicant: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Publication number: 20170174554
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % A12O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Application
    Filed: March 3, 2017
    Publication date: June 22, 2017
    Applicant: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Patent number: 9670088
    Abstract: A scratch resistant alkali aluminoborosilicate glass. The glass is chemically strengthened and has a surface layer that is rich in silica with respect to the remainder of the glass article. The chemically strengthened glass is then treated with an aqueous solution of a mineral acid other than hydrofluoric acid, such as, for example, HCl, HNO3, H2SO4, or the like, to selective leach elements from the glass and leave behind a silica-rich surface layer. The silica-rich surface layer improves the Knoop scratch threshold of the ion exchanged glass compared to ion exchanged glass that are not treated with the acid solution as well as the post-scratch retained strength of the glass.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: June 6, 2017
    Assignee: Corning Incorporated
    Inventors: Sinue Gomez, Robert Michael Morena, Douglas Miles Noni, Jr., James Joseph Price, Sara Jean Sick
  • Patent number: 9624125
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: April 18, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Patent number: 9617183
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. According to one embodiment, the glass composition may include greater than or equal to about 68 mol. % SiO2 and less than or equal to about 80 mol. % SiO2; greater than or equal to about 3 mol. % and less than or equal to about 13 mol. % alkaline earth oxide; X mol. % Al2O3, wherein X is greater than or equal to about 4 and less than or equal to about 8; Y mol. % alkali oxide, wherein the alkali oxide comprises Na2O in an amount greater than about 8 mol %; and B2O3, wherein a ratio (B2O3 (mol. %)/(Y mol. %?X mol. %) is greater than 0 and less than 0.3. In some embodiments, the glass composition may be free of phosphorous and compounds of phosphorous.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: April 11, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Patent number: 9573840
    Abstract: An antimony-free glass suitable for use in a frit for producing a hermetically sealed glass package is described. The hermetically sealed glass package, such as an OLED display device, is manufactured by providing a first glass substrate plate and a second glass substrate plate and depositing the antimony-free frit onto the first substrate plate. OLEDs may be deposited on the second glass substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first glass substrate plate to the second glass substrate plate and also protects the OLEDs. The antimony-free glass has excellent aqueous durability, good flow, low glass transition temperature and low coefficient of thermal expansion.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: February 21, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Melinda Ann Drake, Robert Michael Morena
  • Publication number: 20170036951
    Abstract: According to one embodiment, a coated glass package may include a glass body having a Type 1 chemical durability according to USP 660, a class A2 base resistance or better according to ISO 695, and a type HGB2 hydrolytic resistance or better according to ISO 719. The glass body may include an interior surface and an exterior surface. A lubricous coating having a thickness of ?100 microns may be positioned on the exterior surface. The portion of the exterior surface with the coating may have a coefficient of friction that is at least 20% less than an uncoated glass package and the coefficient of friction does not increase by more than 30% after undergoing depyrogenation. A horizontal compression strength of the coated glass package is at least 10% greater than an uncoated glass package and the horizontal compression strength is not reduced by more than 20% after depyrogenation.
    Type: Application
    Filed: October 21, 2016
    Publication date: February 9, 2017
    Applicant: Corning Incorporated
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren
  • Publication number: 20170037510
    Abstract: A catalyst-free CVD method for forming graphene. The method involves placing a substrate within a reaction chamber, heating the substrate to a temperature between 600° C. and 1100° C., and introducing a carbon precursor into the chamber to form a graphene layer on a surface of the substrate. The method does not use plasma or a metal catalyst to form the graphene.
    Type: Application
    Filed: October 24, 2016
    Publication date: February 9, 2017
    Inventors: Xinyuan Liu, Robert George Manley, Robert Michael Morena, Zhen Song
  • Publication number: 20160362329
    Abstract: An antimony-free glass suitable for use in a frit for producing a hermetically sealed glass package is described. The hermetically sealed glass package, such as an OLED display device, is manufactured by providing a first glass substrate plate and a second glass substrate plate and depositing the antimony-free frit onto the first substrate plate. OLEDs may be deposited on the second glass substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first glass substrate plate to the second glass substrate plate and also protects the OLEDs. The antimony-free glass has excellent aqueous durability, good flow, low glass transition temperature and low coefficient of thermal expansion.
    Type: Application
    Filed: August 24, 2016
    Publication date: December 15, 2016
    Inventors: Melinda Ann Drake, Robert Michael Morena
  • Patent number: 9517966
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: December 13, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Patent number: 9505624
    Abstract: A catalyst-free CVD method for forming graphene. The method involves placing a substrate within a reaction chamber, heating the substrate to a temperature between 600° C. and 1100° C., and introducing a carbon precursor into the chamber to form a graphene layer on a surface of the substrate. The method does not use plasma or a metal catalyst to form the graphene.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: November 29, 2016
    Assignee: Corning Incorporated
    Inventors: Xinyuan Liu, Robert George Manley, Robert Michael Morena, Zhen Song
  • Publication number: 20160251256
    Abstract: Ion exchangeable alkali aluminosilicate glasses and glass articles having softening points and high temperature coefficients of thermal expansion that permit the glass to be formed into three-dimensional shapes by the vacuum sagging process are provided. These glasses contain significant amounts of at least one of MgO and ZnO and comprise B2O3 and less than 1 mol % Li2O.
    Type: Application
    Filed: February 25, 2016
    Publication date: September 1, 2016
    Inventors: MARIE JACQUELINE MONIQUE COMTE, Robert Michael Morena, Charlene Marie Smith
  • Patent number: 9428302
    Abstract: Delamination resistant glass containers with heat-tolerant coatings are disclosed. In one embodiment, a glass container may include a glass body having an interior surface, an exterior surface and a wall thickness extending from the exterior surface to the interior surface. At least the interior surface of the glass body is delamination resistant. The glass container may further include a heat-tolerant coating positioned on at least a portion of the exterior surface of the glass body. The heat-tolerant coating may be thermally stable at temperatures greater than or equal to 260° C. for 30 minutes.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: August 30, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky, Robert Anthony Schaut, Paul Stephen Danielson, Melinda Ann Drake, Robert Michael Morena, Kaveh Adib, James Patrick Hamilton, Susan Lee Schiefelbein
  • Publication number: 20160236966
    Abstract: Strengthened glass substrates with glass frits and methods for forming the same are disclosed. According to one embodiment, a method for forming a glass frit on a glass substrate may include providing a glass substrate comprising a compressive stress layer extending from a surface of the glass substrate into a thickness of the glass substrate, the compressive stress having a depth of layer DOL and an initial compressive stress CSi. A glass frit composition may be deposited on at least a portion of the surface of the glass substrate. Thereafter, the glass substrate and the glass frit composition are heated in a furnace to sinter the glass frit composition and bond the glass frit composition to the glass substrate, wherein, after heating, the glass substrate has a fired compressive stress CSf which is greater than or equal to 0.70*CSi.
    Type: Application
    Filed: April 21, 2016
    Publication date: August 18, 2016
    Inventors: Melinda Ann Drake, Lisa Ann Lamberson, Robert Michael Morena
  • Patent number: 9340447
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and pharmaceutical packaging formed from the same. According to one embodiment, a glass for pharmaceutical packaging includes from about 70 mol. % to about 80 mol. % SiO2; from about 4 mol. % to about 8 mol. % alkaline earth oxide, the alkaline earth oxide comprising MgO and CaO; X mol. % Al2O3, wherein X is from about 4 to about 8; and Y mol. % alkali oxide comprising non-zero amounts of Na2O and K2O, wherein Y is about 9-15 mol. % and a ratio of Y:X is greater than 1.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: May 17, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut