Patents by Inventor Robert S. Raike

Robert S. Raike has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240058600
    Abstract: Techniques are disclosed for delivering electrical stimulation therapy to a patient. In one example, a medical system delivers electrical stimulation therapy to a tissue of the patient via electrodes. The medical system determines a first change of a first sensed signal of the patient to movement by the patient and a second change of a second sensed signal of the patient to the movement by the patient. Based on the first change and the second change, the medical system selects one of the first sensed signal and the second sensed signal of the patient for controlling the electrical stimulation therapy. The medical system adjusts a level of at least one parameter of the electrical stimulation therapy based on the selected one of the first sensed signal and the second sensed signal.
    Type: Application
    Filed: October 27, 2023
    Publication date: February 22, 2024
    Inventors: Scott R. Stanslaski, Timothy R. Abraham, Thomas Adamski, Timothy J. Denison, Robert S. Raike
  • Publication number: 20240050736
    Abstract: Techniques are disclosed for delivering electrical stimulation therapy to a patient. In one example, a medical system delivers electrical stimulation therapy to a tissue of the patient via electrodes. The medical system determines a first change of a first sensed signal of the patient to movement by the patient and a second change of a second sensed signal of the patient to the movement by the patient. Based on the first change and the second change, the medical system selects one of the first sensed signal and the second sensed signal of the patient for controlling the electrical stimulation therapy. The medical system adjusts a level of at least one parameter of the electrical stimulation therapy based on the selected one of the first sensed signal and the second sensed signal.
    Type: Application
    Filed: October 27, 2023
    Publication date: February 15, 2024
    Inventors: Scott R. Stanlaski, Timothy R. Abraham, Thomas Adamski, Timothy J. Denison, Robert S. Raike
  • Publication number: 20240009465
    Abstract: Systems and methods that automatically adjust, or adapt, stimulation waveforms delivered to brain structures. Closed loop system embodiments can automatically be re-configured into a more suitable closed loop control system in response to measures of control system performance. Measures can be internal performance characteristics of the adaptive control system or external inputs provided by another subsystem. As these measures change in time, the robust adaptive system changes in response.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 11, 2024
    Inventors: Thomas L. Chouinard, Scott R. Stanslaski, Timothy R. Abraham, Robert S. Raike
  • Patent number: 11857790
    Abstract: Techniques, systems, and devices are disclosed for delivering stimulation therapy to a patient. In one example, a medical device determines a first set of stimulation parameters that define entrainment stimulation pulses configured to entrain electrical activity in a patient. The medical device may control a stimulation generator to generate the entrainment stimulation pulses according to the first set of stimulation parameters. The medical device may further determine a second set of stimulation parameters that define at least one desynchronization stimulation pulse configured to disrupt at least a portion of the electrical activity entrained by the entrainment stimulation pulses. The medical device may subsequently control the stimulation generator to generate the desynchronization stimulation pulse(s) according to the second set of stimulation parameters.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: January 2, 2024
    Assignee: Medtronic, Inc.
    Inventors: Rene A Molina, Robert S. Raike, Scott R. Stanslaski
  • Patent number: 11801388
    Abstract: Systems and methods that automatically adjust, or adapt, stimulation waveforms delivered to brain structures. Closed loop system embodiments can automatically be reconfigured into a more suitable closed loop control system in response to measures of control system performance. Measures can be internal performance characteristics of the adaptive control system or external inputs provided by another subsystem. As these measures change in time, the robust adaptive system changes in response.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: October 31, 2023
    Assignee: Medtronic, Inc.
    Inventors: Thomas L. Chouinard, Scott R. Stanslaski, Timothy R. Abraham, Robert S. Raike
  • Publication number: 20220266032
    Abstract: A medical device for providing electrical stimulation to a brain of a patient includes one or more processors. The one or more processors are configured to determine a first set of parameters of a first electrical signal that is delivered via a first electrode configured to apply electrical stimulation to a first region of the brain and to determine a second set of parameters of a second electrical signal based on the first set of parameters. The second electrical signal is delivered via a second electrode configured to apply electrical stimulation to a second region of the brain. The one or more processors are further configured to deliver, with the first electrode, the first electrical signal having the first set of parameters and to deliver, with the second electrode, the second electrical signal having the second set of parameters.
    Type: Application
    Filed: February 21, 2022
    Publication date: August 25, 2022
    Inventors: Rene A. Molina, Robert S. Raike, Benjamin P. Isaacson, Christopher L. Pulliam, Abbey Beuning Holt Becker, Michelle A. Case
  • Publication number: 20220249846
    Abstract: Techniques, systems, and devices are disclosed for delivering stimulation therapy to a patient. In one example, a medical device determines a first set of stimulation parameters that define entrainment stimulation pulses configured to entrain electrical activity in a patient. The medical device may control a stimulation generator to generate the entrainment stimulation pulses according to the first set of stimulation parameters. The medical device may further determine a second set of stimulation parameters that define at least one desynchronization stimulation pulse configured to disrupt at least a portion of the electrical activity entrained by the entrainment stimulation pulses. The medical device may subsequently control the stimulation generator to generate the desynchronization stimulation pulse(s) according to the second set of stimulation parameters.
    Type: Application
    Filed: February 28, 2022
    Publication date: August 11, 2022
    Inventors: Rene A. Molina, Robert S. Raike, Scott R. Stanslaski
  • Publication number: 20220176134
    Abstract: Systems and methods that automatically adjust, or adapt, stimulation waveforms delivered to brain structures. Closed loop system embodiments can automatically be reconfigured into a more suitable closed loop control system in response to measures of control system performance. Measures can be internal performance characteristics of the adaptive control system or external inputs provided by another subsystem. As these measures change in time, the robust adaptive system changes in response.
    Type: Application
    Filed: December 3, 2021
    Publication date: June 9, 2022
    Inventors: Thomas L. Chouinard, Scott R. Stanslaski, Timothy R. Abraham, Robert S. Raike
  • Publication number: 20220062640
    Abstract: Devices, systems, and techniques for identifying electrodes closest to a target region of tissue are described. In one example, a device includes sensing circuitry configured to sense electrical signals from a plurality of electrode combinations. Processing circuitry identifies a first electrode combination of a first subset of electrode combinations. Each electrode combination of the first subset of electrode combination includes electrodes located at different axial positions along a length of the medical lead. The processing circuitry identifies a second electrode combination of a second subset of electrode combinations. Each electrode combination of the second subset of electrode combinations includes electrodes located at a same axial position and different circumferential positions around a perimeter of the medical lead. The processing circuitry then determines a third electrode combination and controls delivery of electrical stimulation via the third electrode combination.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 3, 2022
    Inventors: Robert S. Raike, Jadin C. Jackson, Scott R. Stanslaski, Eric J. Panken, Christopher L. Pulliam, Timothy R. Abraham, Michelle A. Case, Paula Andrea Elma Dassbach Green, Abbey Beuning Holt Becker, Rene A. Molina
  • Patent number: 11260231
    Abstract: Techniques, systems, and devices are disclosed for delivering stimulation therapy to a patient. In one example, a medical device determines a first set of stimulation parameters that define entrainment stimulation pulses configured to entrain electrical activity in a patient. The medical device may control a stimulation generator to generate the entrainment stimulation pulses according to the first set of stimulation parameters. The medical device may further determine a second set of stimulation parameters that define at least one desynchronization stimulation pulse configured to disrupt at least a portion of the electrical activity entrained by the entrainment stimulation pulses. The medical device may subsequently control the stimulation generator to generate the desynchronization stimulation pulse(s) according to the second set of stimulation parameters.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: March 1, 2022
    Assignee: Medtronic, Inc.
    Inventors: Rene A. Molina, Robert S. Raike, Scott R. Stanslaski
  • Publication number: 20210322770
    Abstract: In some examples of selecting a target therapy delivery site for treating a patient condition, a relatively high frequency electrical stimulation signal is delivered to at least two areas within a first region (e.g., an anterior nucleus of the thalamus) of a brain of a patient, and changes in brain activity (e.g., as indicated by bioelectrical brain signals) within a second region (e.g., a hippocampus) of the brain of the patient in response to the delivered stimulation are determined. The target therapy delivery site, an electrode combination, or both, may be selected based on the changes in brain activity.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 21, 2021
    Inventors: Jonathon E. Giftakis, Timothy J. Denison, Paul H. Stypulkowski, Scott R. Stanslaski, Robert S. Raike, Mae Eng, David E. Linde, Thomas Adamski
  • Patent number: 11077305
    Abstract: In some examples of selecting a target therapy delivery site for treating a patient condition, a relatively high frequency electrical stimulation signal is delivered to at least two areas within a first region (e.g., an anterior nucleus of the thalamus) of a brain of a patient, and changes in brain activity (e.g., as indicated by bioelectrical brain signals) within a second region (e.g., a hippocampus) of the brain of the patient in response to the delivered stimulation are determined. The target therapy delivery site, an electrode combination, or both, may be selected based on the changes in brain activity.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: August 3, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Jonathon E. Giftakis, Timothy J. Denison, Paul H. Stypulkowski, Scott R. Stanslaski, Robert S. Raike, Mae Eng, David E. Linde, Thomas Adamski
  • Publication number: 20210228883
    Abstract: Techniques, systems, and devices are disclosed for delivering stimulation therapy to a patient. In one example, a medical device determines a first set of stimulation parameters that define entrainment stimulation pulses configured to entrain electrical activity in a patient. The medical device may control a stimulation generator to generate the entrainment stimulation pulses according to the first set of stimulation parameters. The medical device may further determine a second set of stimulation parameters that define at least one desynchronization stimulation pulse configured to disrupt at least a portion of the electrical activity entrained by the entrainment stimulation pulses. The medical device may subsequently control the stimulation generator to generate the desynchronization stimulation pulse(s) according to the second set of stimulation parameters.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 29, 2021
    Inventors: Rene A. Molina, Robert S. Raike, Scott R. Stanslaski
  • Publication number: 20210196948
    Abstract: Techniques are disclosed for delivering electrical stimulation therapy to a patient. In one example, a medical system delivers electrical stimulation therapy to a tissue of the patient via electrodes. The medical system determines a first response of a first sensed signal of the patient to the electrical stimulation therapy and a second response of a second sensed signal of the patient to the electrical stimulation therapy. Based on the first response and the second response for controlling the electrical stimulation therapy, the medical system selects one of the first sensed signal and the second sensed signal of the patient. The medical system adjusts a level of at least one parameter of the electrical stimulation therapy based on the selected one of the first sensed signal and the second sensed signal.
    Type: Application
    Filed: March 11, 2021
    Publication date: July 1, 2021
    Inventors: Scott R. Stanslaski, Timothy R. Abraham, Thomas Adamski, Timothy J. Denison, Robert S. Raike, Christopher L. Pulliam
  • Patent number: 11045652
    Abstract: Techniques are described determining electrodes that are proximate or distal to location of an oscillatory signal source in a patient based on current source densities (CSDs). Processing circuitry may determine, for one or more electrodes of a plurality of electrodes, respective time-varying measurements of CSDs, aggregate, for the one or more electrodes of the plurality electrodes, the respective time-varying measurements of the CSDs to generate respective average level values for the one or more electrodes of the plurality of electrodes, determine, for one or more electrodes of the plurality of electrodes, respective phase-magnitude representations of the time-varying measurements of the CSDs. The respective phase-magnitude representations are indicative of respective magnitudes and phases of a particular frequency component of respective time-varying measurements of the CSDs.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: June 29, 2021
    Assignee: Medtronic, Inc.
    Inventors: Jadin C. Jackson, Yizi Xiao, Paula Andrea Elma Dassbach Green, Jianping Wu, Christopher L. Pulliam, Eric J. Panken, Robert S. Raike, Scott R. Stanslaski
  • Publication number: 20210121697
    Abstract: A medical device or system of medical devices can be configured to detect an indicator of a symptom in a patient; in response to detecting the indicator of the symptom in the patient, deliver to the patient a first stimulation therapy; and in response to determining that the indicator of the symptom has been present for more than a threshold amount of time after beginning to deliver the first stimulation therapy a second stimulation therapy different than the first stimulation therapy.
    Type: Application
    Filed: October 2, 2020
    Publication date: April 29, 2021
    Inventors: David E. Linde, Benjamin P. Isaacson, Nicholas D. Buse, Duane L. Bourget, Robert S. Raike, Jonathon E. Giftakis, Caleb C. Zarns, Thomas L. Chouinard
  • Patent number: 10960202
    Abstract: Techniques are disclosed for delivering electrical stimulation therapy to a patient. In one example, a medical system delivers electrical stimulation therapy to a tissue of the patient via electrodes. The medical system determines a first change of a first sensed signal of the patient to movement by the patient and a second change of a second sensed signal of the patient to the movement by the patient. Based on the first change and the second change, the medical system selects one of the first sensed signal and the second sensed signal of the patient for controlling the electrical stimulation therapy. The medical system adjusts a level of at least one parameter of the electrical stimulation therapy based on the selected one of the first sensed signal and the second sensed signal.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: March 30, 2021
    Assignee: Medtronic, Inc.
    Inventors: Scott R. Stanslaski, Timothy R. Abraham, Thomas Adamski, Timothy J. Denison, Robert S. Raike
  • Patent number: 10953222
    Abstract: Techniques are disclosed for delivering electrical stimulation therapy to a patient. In one example, a medical system delivers electrical stimulation therapy to a tissue of the patient via electrodes. The medical system determines a first response of a first sensed signal of the patient to the electrical stimulation therapy and a second response of a second sensed signal of the patient to the electrical stimulation therapy. Based on the first response and the second response for controlling the electrical stimulation therapy, the medical system selects one of the first sensed signal and the second sensed signal of the patient. The medical system adjusts a level of at least one parameter of the electrical stimulation therapy based on the selected one of the first sensed signal and the second sensed signal.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: March 23, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Scott R. Stanslaski, Timothy R. Abraham, Thomas Adamski, Timothy J. Denison, Robert S. Raike, Christopher Pulliam
  • Publication number: 20210060331
    Abstract: Techniques are disclosed for delivering electrical stimulation therapy to a patient. In one example, a medical system delivers electrical stimulation therapy to a tissue of the patient via electrodes. The medical system determines a first change of a first sensed signal of the patient to movement by the patient and a second change of a second sensed signal of the patient to the movement by the patient. Based on the first change and the second change, the medical system selects one of the first sensed signal and the second sensed signal of the patient for controlling the electrical stimulation therapy. The medical system adjusts a level of at least one parameter of the electrical stimulation therapy based on the selected one of the first sensed signal and the second sensed signal.
    Type: Application
    Filed: November 13, 2020
    Publication date: March 4, 2021
    Inventors: Scott R. Stanslaski, Timothy R. Abraham, Thomas Adamski, Timothy J. Denison, Robert S. Raike
  • Publication number: 20200338353
    Abstract: Techniques are described determining electrodes that are proximate or distal to location of an oscillatory signal source in a patient based on current source densities (CSDs). Processing circuitry may determine, for one or more electrodes of a plurality of electrodes, respective time-varying measurements of CSDs, aggregate, for the one or more electrodes of the plurality electrodes, the respective time-varying measurements of the CSDs to generate respective average level values for the one or more electrodes of the plurality of electrodes, determine, for one or more electrodes of the plurality of electrodes, respective phase-magnitude representations of the time-varying measurements of the CSDs. The respective phase-magnitude representations are indicative of respective magnitudes and phases of a particular frequency component of respective time-varying measurements of the CSDs.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 29, 2020
    Inventors: Jadin C. Jackson, Yizi Xiao, Paula Andrea Elma Dassbach Green, Jianping Wu, Christopher L. Pulliam, Eric J. Panken, Robert S. Raike, Scott R. Stanslaski