Patents by Inventor Robert W. Tiernay

Robert W. Tiernay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11288464
    Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGOTM RFID backscatter transponders, SEGOTM RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: March 29, 2022
    Assignee: Amtech Systems, LLC
    Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
  • Publication number: 20200364418
    Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGOTM RFID backscatter transponders, SEGOTM RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
  • Patent number: 10733393
    Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGO™ RFID backscatter transponders, SEGO™ RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: August 4, 2020
    Assignee: Amtech Systems, LLC
    Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
  • Patent number: 10607044
    Abstract: A multi-mode, preferably dual mode, radio frequency identification (RFID) tag is adapted for automatic detection of whether a RFID reader located within communication range of the RFID tag is transmitting a continuous wave (CW) or modulated wave types of RF signal, and accordingly, mandating a response from the tag in read-only (RO) mode or read/write (R/W) mode, respectively. The tag includes means for designating one of the RO and R/W operating modes as a default mode of the tag, and for switching the tag from its default mode to its other operating mode, and vice versa, according to a rule for determining the frequency of occurrence of a selected event related to signal type of the reader. A device-implemented method of this automatic detection, and a method of fabricating the tag, are also disclosed.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: March 31, 2020
    Assignee: Amtech Systems, LLC
    Inventors: Kelly Gravelle, Robert W. Tiernay, Dale L. Scott, Charles A. Johnson, Filip Weytjens, Matthew K. Burnett
  • Publication number: 20200050804
    Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGO™ RFID backscatter transponders, SEGO™ RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.
    Type: Application
    Filed: September 18, 2019
    Publication date: February 13, 2020
    Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
  • Patent number: 10467440
    Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGOTM RFID backscatter transponders, SEGOTM RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: November 5, 2019
    Assignee: AMTECH SYSTEMS, LLC
    Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
  • Publication number: 20190332827
    Abstract: A multi-mode, preferably dual mode, radio frequency identification (RFID) tag is adapted for automatic detection of whether a RFID reader located within communication range of the RFID tag is transmitting a continuous wave (CW) or modulated wave types of RF signal, and accordingly, mandating a response from the tag in read-only (RO) mode or read/write (R/W) mode, respectively. The tag includes means for designating one of the RO and R/W operating modes as a default mode of the tag, and for switching the tag from its default mode to its other operating mode, and vice versa, according to a rule for determining the frequency of occurrence of a selected event related to signal type of the reader. A device-implemented method of this automatic detection, and a method of fabricating the tag, are also disclosed.
    Type: Application
    Filed: July 8, 2019
    Publication date: October 31, 2019
    Inventors: Kelly Gravelle, Robert W. Tiernay, Dale L. Scott, Charles A. Johnson, Filip Weytjens, Matthew K. Burnett
  • Patent number: 10346648
    Abstract: A multi-mode, preferably dual mode, radio frequency identification (RFID) tag is adapted for automatic detection of whether a RFID reader located within communication range of the RFID tag is transmitting a continuous wave (CW) or modulated wave types of RF signal, and accordingly, mandating a response from the tag in read-only (RO) mode or read/write (R/W) mode, respectively. The tag includes means for designating one of the RO and R/W operating modes as a default mode of the tag, and for switching the tag from its default mode to its other operating mode, and vice versa, according to a rule for determining the frequency of occurrence of a selected event related to signal type of the reader. A device-implemented method of this automatic detection, and a method of fabricating the tag, are also disclosed.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: July 9, 2019
    Assignee: AMTECH SYSTEMS, LLC
    Inventors: Kelly Gravelle, Robert W. Tiernay, Dale L. Scott, Charles A. Johnson, Filip Weytjens, Matthew K. Burnett
  • Publication number: 20180373905
    Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGOTM RFID backscatter transponders, SEGOTM RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.
    Type: Application
    Filed: September 5, 2018
    Publication date: December 27, 2018
    Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
  • Publication number: 20180293413
    Abstract: A multi-mode, preferably dual mode, radio frequency identification (RFID) tag is adapted for automatic detection of whether a RFID reader located within communication range of the RFID tag is transmitting a continuous wave (CW) or modulated wave types of RF signal, and accordingly, mandating a response from the tag in read-only (RO) mode or read/write (R/W) mode, respectively. The tag includes means for designating one of the RO and R/W operating modes as a default mode of the tag, and for switching the tag from its default mode to its other operating mode, and vice versa, according to a rule for determining the frequency of occurrence of a selected event related to signal type of the reader. A device-implemented method of this automatic detection, and a method of fabricating the tag, are also disclosed.
    Type: Application
    Filed: June 11, 2018
    Publication date: October 11, 2018
    Inventors: Kelly Gravelle, Robert W. Tiernay, Dale L. Scott, Charles A. Johnson, Filip Weytjens, Matthew K. Burnett
  • Patent number: 10083329
    Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGO™ RFID backscatter transponders, SEGO™ RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: September 25, 2018
    Assignee: Amtech Systems, LLC
    Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
  • Patent number: 9996715
    Abstract: A multi-mode, preferably dual mode, radio frequency identification (RFID) tag is adapted for automatic detection of whether a RFID reader located within communication range of the RFID tag is transmitting a continuous wave (CW) or modulated wave types of RF signal, and accordingly, mandating a response from the tag in read-only (RO) mode or read/write (R/W) mode, respectively. The tag includes means for designating one of the RO and R/W operating modes as a default mode of the tag, and for switching the tag from its default mode to its other operating mode, and vice versa, according to a rule for determining the frequency of occurrence of a selected event related to signal type of the reader. A device-implemented method of this automatic detection, and a method of fabricating the tag, are also disclosed.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: June 12, 2018
    Assignee: Amtech Systems, LLC
    Inventors: Kelly Gravelle, Robert W. Tiernay, Dale L. Scott, Charles A. Johnson, Filip Weytjens, Matthew K. Burnett
  • Publication number: 20180032766
    Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGOTM RFID backscatter transponders, SEGOTM RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.
    Type: Application
    Filed: October 6, 2017
    Publication date: February 1, 2018
    Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
  • Patent number: 9785804
    Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGO™ RFID backscatter transponders, SEGO™ RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: October 10, 2017
    Assignee: Amtech Systems, LLC
    Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
  • Publication number: 20170213056
    Abstract: When multiple readers for RF transponders have to be placed in close proximity, such as in adjacent lanes of a highway toll barrier, they can be set to operate at different frequencies. When signals from two adjacent ones of the readers interfere, the resulting signal includes interference terms whose frequencies equal the sum of the reader frequencies and the difference between the reader frequencies. To remove such interference terms while passing the desired terms, a tag includes a low-pass or other frequency-selective filter.
    Type: Application
    Filed: December 20, 2016
    Publication date: July 27, 2017
    Inventor: Robert W. TIERNAY
  • Publication number: 20170177910
    Abstract: A multi-mode, preferably dual mode, radio frequency identification (RFID) tag is adapted for automatic detection of whether a RFID reader located within communication range of the RFID tag is transmitting a continuous wave (CW) or modulated wave types of RF signal, and accordingly, mandating a response from the tag in read-only (RO) mode or read/write (R/W) mode, respectively. The tag includes means for designating one of the RO and R/W operating modes as a default mode of the tag, and for switching the tag from its default mode to its other operating mode, and vice versa, according to a rule for determining the frequency of occurrence of a selected event related to signal type of the reader. A device-implemented method of this automatic detection, and a method of fabricating the tag, are also disclosed.
    Type: Application
    Filed: March 2, 2017
    Publication date: June 22, 2017
    Inventors: Kelly Gravelle, Robert W. Tiernay, Dale L. Scott, Charles A. Johnson, Filip Weytjens, Matthew K. Burnett
  • Patent number: 9607190
    Abstract: A multi-mode, preferably dual mode, radio frequency identification (RFID) tag is adapted for automatic detection of whether a RFID reader located within communication range of the RFID tag is transmitting a continuous wave (CW) or modulated wave types of RF signal, and accordingly, mandating a response from the tag in read-only (RO) mode or read/write (R/W) mode, respectively. The tag includes means for designating one of the RO and R/W operating modes as a default mode of the tag, and for switching the tag from its default mode to its other operating mode, and vice versa, according to a rule for determining the frequency of occurrence of a selected event related to signal type of the reader. A device-implemented method of this automatic detection, and a method of fabricating the tag, are also disclosed.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: March 28, 2017
    Assignee: AMTECH SYSTEMS, LLC
    Inventors: Kelly Gravelle, Robert W. Tiernay, Dale L. Scott, Charles A. Johnson, Filip Weytjens, Matthew K. Burnett
  • Patent number: 9558383
    Abstract: When multiple readers for RF transponders have to be placed in close proximity, such as in adjacent lanes of a highway toll barrier, they can be set to operate at different frequencies. When signals from two adjacent ones of the readers interfere, the resulting signal includes interference terms whose frequencies equal the sum of the reader frequencies and the difference between the reader frequencies. To remove such interference terms while passing the desired terms, a tag includes a low-pass or other frequency-selective filter.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: January 31, 2017
    Assignee: Amtech Systems, LLC
    Inventor: Robert W. Tiernay
  • Publication number: 20160321476
    Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGOTM RFID backscatter transponders, SEGOTM RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 3, 2016
    Inventors: Kelly GRAVELLE, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
  • Publication number: 20160253532
    Abstract: A multi-mode, preferably dual mode, radio frequency identification (RFID) tag is adapted for automatic detection of whether a RFID reader located within communication range of the RFID tag is transmitting a continuous wave (CW) or modulated wave types of RF signal, and accordingly, mandating a response from the tag in read-only (RO) mode or read/write (R/W) mode, respectively. The tag includes means for designating one of the RO and R/W operating modes as a default mode of the tag, and for switching the tag from its default mode to its other operating mode, and vice versa, according to a rule for determining the frequency of occurrence of a selected event related to signal type of the reader. A device-implemented method of this automatic detection, and a method of fabricating the tag, are also disclosed.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 1, 2016
    Inventors: Kelly Gravelle, Robert W. Tiernay, Dale L. Scott, Charles A. Johnson, Filip Weytjens, Matthew K. Burnett