Patents by Inventor Robyn Rebecca Reed McLaughlin
Robyn Rebecca Reed McLaughlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20170235349Abstract: 3D printed thermal management devices and corresponding methods of manufacturing are described herein. A thermal management device includes a single contiguous component including at least a portion of a first heat exchanger and at least a portion of a second heat exchanger. The second heat exchanger is of a different type than the first heat exchanger.Type: ApplicationFiled: February 17, 2016Publication date: August 17, 2017Inventors: Lincoln Ghioni, Jeffrey Taylor Stellman, Andrew Hill, Kurt Jenkins, Robyn Rebecca Reed McLaughlin
-
Publication number: 20170177038Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: ApplicationFiled: February 7, 2017Publication date: June 22, 2017Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy Caryle Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Patent number: 9678542Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: GrantFiled: January 13, 2016Date of Patent: June 13, 2017Assignee: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Publication number: 20170142861Abstract: Heat dissipation configurations and methods are described herein. Certain electronic devices may include an individual piece of thermally conductive material having a first surface and a second surface. A first section of the thermally conductive material may be positioned between a motherboard and a backing layer of an electronic device such that the first surface of the first section is adjacent to the motherboard and the second surface of the first section is adjacent to the backing layer. A second section of the thermally conductive material may be positioned between a display module and a battery of the electronic device such that the first surface of the second section is adjacent to a back plate of the display module and the second surface of the second section is adjacent to the battery. The thermally conductive material may be configured to transfer heat between the first section and the second section.Type: ApplicationFiled: November 18, 2015Publication date: May 18, 2017Inventors: Robyn Rebecca Reed McLaughlin, Jeffrey Taylor Stellman, Andrew Hill
-
Publication number: 20170049006Abstract: Heat dissipation configurations and methods are described herein. A heat dissipation apparatus may include an individual piece of metal having a thermally conductive metal surface. The metal surface includes a plurality of ridges or protrusions extending from a base of the metal surface, wherein an air flow channel is provided between each two adjacent protrusions, therein providing a plurality of air flow channels. The apparatus is configured to dissipate heat for an electronic device having an active cooling source directing air through the plurality of air flow channels. In some examples, the heat dissipation apparatus is a vapor chamber, and the surface includes a section having a trough and a raised area or platform surrounded by the trough, wherein the raised area is configured to contact a microprocessor die in communication with the vapor chamber.Type: ApplicationFiled: August 14, 2015Publication date: February 16, 2017Inventors: Robyn Rebecca Reed McLaughlin, Jeffrey Taylor Stellman, Andrew Hill, Paul Bornemann
-
Publication number: 20160299537Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: ApplicationFiled: June 16, 2016Publication date: October 13, 2016Applicant: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy Carlyle Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Publication number: 20160209884Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: ApplicationFiled: March 28, 2016Publication date: July 21, 2016Applicant: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy Carlyle Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Publication number: 20160124467Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: ApplicationFiled: January 13, 2016Publication date: May 5, 2016Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Patent number: 9306344Abstract: Computing device connectors are described. In one or more implementations, a connector includes one or more communication contacts configured to support transmission of data and a receptacle secured within an opening of a printed circuit board. The receptacle having the one or more communication contacts disposed therein to support transmission of data upon contact with one or more communication contacts of a plug disposed within the receptacle, the receptacle having an angled outer edge.Type: GrantFiled: March 27, 2014Date of Patent: April 5, 2016Assignee: Microsoft Technology Licensing, LLCInventors: Robyn Rebecca Reed McLaughlin, Andrew William Hill, Nathan Thome, Jan Raken, John Stephen Campbell
-
Patent number: 9268373Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: GrantFiled: June 1, 2015Date of Patent: February 23, 2016Assignee: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Patent number: 9176900Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: GrantFiled: March 25, 2014Date of Patent: November 3, 2015Assignee: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Patent number: 9176901Abstract: Flux fountain techniques are described. In one or more implementations, an apparatus includes a cover configured to be disposed over at least a portion of a display device of a computing device that is configured as a tablet and a connection portion attached to the cover using a flexible hinge. The connection portion is configured to be physically coupled to the computing device using a magnetic coupling device. The magnetic coupling device includes a first magnet that is disposed in the connection portion such that a magnetic field is aligned along an axis and second and third magnets are disposed in the connection portion at opposing sides of the first magnet from each other. The second and third magnets have respective magnetic fields that are aligned along a respective axis that is substantially perpendicular to the axis of the magnetic field of the first magnet.Type: GrantFiled: August 12, 2014Date of Patent: November 3, 2015Assignee: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Robyn Rebecca Reed McLaughlin, Summer L. Schneider, Eric Joseph Wahl, James H. Wise, Camilo Leon, Karsten Aagaard, Thomas Charles Oliver
-
Patent number: 9158384Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: GrantFiled: August 1, 2012Date of Patent: October 13, 2015Assignee: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Publication number: 20150280371Abstract: Computing device connectors are described. In one or more implementations, a connector includes one or more communication contacts configured to support transmission of data and a receptacle secured within an opening of a printed circuit board. The receptacle having the one or more communication contacts disposed therein to support transmission of data upon contact with one or more communication contacts of a plug disposed within the receptacle, the receptacle having an angled outer edge.Type: ApplicationFiled: March 27, 2014Publication date: October 1, 2015Applicant: Microsoft CorporationInventors: Robyn Rebecca Reed McLaughlin, Andrew William Hill, Nathan Thome, Jan Raken, John Stephen Campbell
-
Publication number: 20150261262Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: ApplicationFiled: June 1, 2015Publication date: September 17, 2015Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Publication number: 20150241929Abstract: Peripheral device storage techniques are described. In one or more implementations, a computing device includes a housing and a power connection port that is configured to form a physical coupling to a peripheral device sufficient to retain the peripheral device against the housing and form an electrical coupling configured to receive power at the computing device from a power adapter.Type: ApplicationFiled: April 27, 2015Publication date: August 27, 2015Inventors: Jan Raken, Andrew W. Hill, Robert J. Bingham, JR., Peter Kyriacou, Robyn Rebecca Reed McLaughlin
-
Patent number: 9075566Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: GrantFiled: March 7, 2014Date of Patent: July 7, 2015Assignee: Microsoft Technoogy Licensing, LLCInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Patent number: 9063693Abstract: Peripheral device storage techniques are described. In one or more implementations, a computing device includes a housing and a power connection port that is configured to form a physical coupling to a peripheral device sufficient to retain the peripheral device against the housing and form an electrical coupling configured to receive power at the computing device from a power adapter.Type: GrantFiled: September 5, 2012Date of Patent: June 23, 2015Assignee: Microsoft Technology Licensing, LLCInventors: Jan Raken, Andrew W. Hill, Robert J. Bingham, Jr., Peter Kyriacou, Robyn Rebecca Reed McLaughlin
-
Patent number: 8947864Abstract: Fabric outer layer techniques are described. In one or more implementations, an apparatus includes, an input portion having one or more keys configured to generate signals to be processed by a computing device as inputs, a connection portion that is configured to be removable attachable to the computing device and including at least one communication contact configured to form a communicative coupling with the computing device to communicate the generated signals, a flexible hinge that is configured to flexibly and communicatively connect the connection portion to the input portion, and first and second outer fabric layers that are configured to act as an outer surface of the one or more keys of the input portion and the flexible hinge and are physically secured to the connection portion.Type: GrantFiled: May 14, 2014Date of Patent: February 3, 2015Assignee: Microsoft CorporationInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Publication number: 20140362506Abstract: Flux fountain techniques are described. In one or more implementations, an apparatus includes a cover configured to be disposed over at least a portion of a display device of a computing device that is configured as a tablet and a connection portion attached to the cover using a flexible hinge. The connection portion is configured to be physically coupled to the computing device using a magnetic coupling device. The magnetic coupling device includes a first magnet that is disposed in the connection portion such that a magnetic field is aligned along an axis and second and third magnets are disposed in the connection portion at opposing sides of the first magnet from each other. The second and third magnets have respective magnetic fields that are aligned along a respective axis that is substantially perpendicular to the axis of the magnetic field of the first magnet.Type: ApplicationFiled: August 12, 2014Publication date: December 11, 2014Inventors: David Otto Whitt, III, Robyn Rebecca Reed McLaughlin, Summer L. Schneider, Eric Joseph Wahl, James H. Wise, Camilo Leon, Karsten Aagaard, Thomas Charles Oliver