Patents by Inventor Rodger W. Cleye

Rodger W. Cleye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11686821
    Abstract: A system includes a first lidar sensor and a second lidar sensor, where each lidar sensor includes a scanner configured to direct a set of pulses of light along a scan pattern and a receiver configured to detect scattered light from the set of light pulses. The scan patterns are at least partially overlapped in an overlap region. The system further includes an enclosure, where the first lidar sensor and the second lidar sensor are contained within the enclosure. Each scanner includes one or more mirrors, and each mirror is driven by a scan mechanism.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: June 27, 2023
    Assignee: Luminar, LLC
    Inventors: Scott R. Campbell, Rodger W. Cleye, Jason M. Eichenholz, Lane A. Martin, Matthew D. Weed
  • Patent number: 10557940
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light across a field of regard. The lidar system also includes a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: February 11, 2020
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin, Stephen D. Gaalema
  • Publication number: 20190250254
    Abstract: A system includes a first lidar sensor and a second lidar sensor, where each lidar sensor includes a scanner configured to direct a set of pulses of light along a scan pattern and a receiver configured to detect scattered light from the set of light pulses. The scan patterns are at least partially overlapped in an overlap region. The system further includes an enclosure, where the first lidar sensor and the second lidar sensor are contained within the enclosure. Each scanner includes one or more mirrors, and each mirror is driven by a scan mechanism.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Scott R. Campbell, Rodger W. Cleye, Jason M. Eichenholz, Lane A. Martin, Matthew D. Weed
  • Patent number: 10267898
    Abstract: A lidar system is disclosed. The lidar system can include a light source to produce first and second sets of pulses of light. The system can also include a first lidar sensor with a first scanner to scan the first set of pulses of light along a first scan pattern, and a first receiver to detect scattered light from the first set of pulses of light. The system can also include a second lidar sensor with a second scanner to scan the second set of pulses of light along a second scan pattern, and a second receiver to detect scattered light from the second set of pulses of light. The first scan pattern and the second scan pattern can be at least partially overlapped in an overlap region. The lidar system can also include an enclosure to contain the light source, the first lidar sensor, and the second lidar sensor.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: April 23, 2019
    Assignee: Luminar Technologies, Inc.
    Inventors: Scott R. Campbell, Rodger W. Cleye, Jason M. Eichenholz, Lane A. Martin, Matthew D. Weed
  • Patent number: 10241198
    Abstract: A method for calibrating lidar systems operating in vehicles includes detecting a triggering event, causing the lidar system to not emit light during a calibration period, determining an amount of noise measured by the lidar system during the calibration period, generating a noise level metric based on the amount of noise detected during the calibration period, and adjusting subsequent readings of the lidar system using the noise level metric. The adjusting includes measuring energy levels of return light pulses emitted from the lidar system and scattered by targets and offsetting the measured energy levels by the noise level metric.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: March 26, 2019
    Assignee: Luminar Technologies, Inc.
    Inventors: Joseph G. LaChapelle, Rodger W. Cleye, Scott R. Campbell, Jason M. Eichenholz
  • Publication number: 20180364356
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light across a field of regard. The lidar system also includes a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system.
    Type: Application
    Filed: November 29, 2016
    Publication date: December 20, 2018
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Publication number: 20180284245
    Abstract: A method for calibrating lidar systems operating in vehicles includes detecting a triggering event, causing the lidar system to not emit light during a calibration period, determining an amount of noise measured by the lidar system during the calibration period, generating a noise level metric based on the amount of noise detected during the calibration period, and adjusting subsequent readings of the lidar system using the noise level metric. The adjusting includes measuring energy levels of return light pulses emitted from the lidar system and scattered by targets and offsetting the measured energy levels by the noise level metric.
    Type: Application
    Filed: November 30, 2017
    Publication date: October 4, 2018
    Inventors: Joseph G. LaChapelle, Rodger W. Cleye, Scott R. Campbell
  • Publication number: 20180284225
    Abstract: To compensate for motor dynamics in a scanner in a lidar system, a light source transmits light pulses at a variable pulse rate in accordance with a scan speed of the scanner. More specifically, the pulse rate may be directly related to the scan speed so that the light source transmits light pulses uniformly across a field of regard. A controller may determine the scan speed and provide a control signal to the light source adjusting the pulse rate accordingly.
    Type: Application
    Filed: January 22, 2018
    Publication date: October 4, 2018
    Inventors: Matthew D. Weed, Scott R. Campbell, Lane A. Martin, Jason M. Eichenholz, Austin K. Russell, Rodger W. Cleye, Melvin L. Stauffer
  • Patent number: 10088559
    Abstract: To compensate for motor dynamics in a scanner in a lidar system, a light source transmits light pulses at a variable pulse rate in accordance with a scan speed of the scanner. More specifically, the pulse rate may be directly related to the scan speed so that the light source transmits light pulses uniformly across a field of regard. A controller may determine the scan speed and provide a control signal to the light source adjusting the pulse rate accordingly.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: October 2, 2018
    Assignee: LUMINAR TECHNOLOGIES, INC.
    Inventors: Matthew D. Weed, Scott R. Campbell, Lane A. Martin, Jason M. Eichenholz, Austin K. Russell, Rodger W. Cleye, Melvin L. Stauffer
  • Publication number: 20180275249
    Abstract: A lidar system is disclosed. The lidar system can include a light source to produce first and second sets of pulses of light. The system can also include a first lidar sensor with a first scanner to scan the first set of pulses of light along a first scan pattern, and a first receiver to detect scattered light from the first set of pulses of light. The system can also include a second lidar sensor with a second scanner to scan the second set of pulses of light along a second scan pattern, and a second receiver to detect scattered light from the second set of pulses of light. The first scan pattern and the second scan pattern can be at least partially overlapped in an overlap region. The lidar system can also include an enclosure to contain the light source, the first lidar sensor, and the second lidar sensor.
    Type: Application
    Filed: January 15, 2018
    Publication date: September 27, 2018
    Inventors: SCOTT R. CAMPBELL, RODGER W. CLEYE, JASON M. EICHENHOLZ, LANE A. MARTIN, MATTHEW D. WEED
  • Patent number: 10012732
    Abstract: A lidar system with a pulsed laser diode to produce a plurality of optical seed pulses of light at one or more operating wavelengths between approximately 1400 nm and approximately 1600 nm. The lidar system may also include one or more optical amplifiers to amplify the optical seed pulses to produce a plurality of output optical pulses. Each optical amplifier may produce an amount of amplified spontaneous emission (ASE), and the output optical pulses may have characteristics comprising: a pulse repetition frequency of less than or equal to 100 MHz; a pulse duration of less than or equal to 20 nanoseconds; and a duty cycle of less than or equal to 1%. The lidar system may also include one or more optical filters to attenuate the ASE and a receiver to detect at least a portion of the output optical pulses scattered by a target located a distance.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: July 3, 2018
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Publication number: 20180120433
    Abstract: A lidar system with a pulsed laser diode to produce a plurality of optical seed pulses of light at one or more operating wavelengths between approximately 1400 nm and approximately 1600 nm. The lidar system may also include one or more optical amplifiers to amplify the optical seed pulses to produce a plurality of output optical pulses. Each optical amplifier may produce an amount of amplified spontaneous emission (ASE), and the output optical pulses may have characteristics comprising: a pulse repetition frequency of less than or equal to 100 MHz; a pulse duration of less than or equal to 20 nanoseconds; and a duty cycle of less than or equal to 1%. The lidar system may also include one or more optical filters to attenuate the ASE and a receiver to detect at least a portion of the output optical pulses scattered by a target located a distance.
    Type: Application
    Filed: December 29, 2017
    Publication date: May 3, 2018
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Patent number: 9958545
    Abstract: A lidar system with a light source to emit a pulse of light and a receiver to detect a return pulse of light. The receiver can include a first channel to receive a first portion of the return pulse and produce a first digital output signal, and a second channel to receive a second portion of the return pulse and produce a second digital output signal. The receiver can include a logic circuit to produce an output electrical-edge signal in response to receiving the digital output signals. The receiver can also include a time-to-digital converter to determine a time interval based on an emission time of the pulse of light and based on the electrical-edge signal. The lidar system can also include a processor to determine a distance to a target based at least in part on the time interval.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: May 1, 2018
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Publication number: 20180088236
    Abstract: A lidar system with a light source to emit a pulse of light and a receiver to detect a return pulse of light. The receiver can include a first channel to receive a first portion of the return pulse and produce a first digital output signal, and a second channel to receive a second portion of the return pulse and produce a second digital output signal. The receiver can include a logic circuit to produce an output electrical-edge signal in response to receiving the digital output signals. The receiver can also include a time-to-digital converter to determine a time interval based on an emission time of the pulse of light and based on the electrical-edge signal. The lidar system can also include a processor to determine a distance to a target based at least in part on the time interval.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 29, 2018
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Publication number: 20180024241
    Abstract: A lidar system with a pulsed laser diode configured to produce an optical seed pulse of light at an operating wavelength between approximately 1400 nm and approximately 1600 nm. The lidar system may also include an optical amplifier configured to amplify the optical seed pulse to produce an eye-safe output optical pulse that is emitted into a field of view. The optical amplifier may produce an amount of amplified spontaneous emission (ASE) associated with the output optical pulse. The lidar system may include an optical filter configured to filter the output optical pulse to reduce the associated ASE. The lidar system may also include a receiver configured to detect at least a portion of the output optical pulse reflected or scattered from the field of view.
    Type: Application
    Filed: March 27, 2017
    Publication date: January 25, 2018
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Patent number: 9874635
    Abstract: A lidar system having a light source to emit an output beam and an overlap mirror having a reflecting surface with an aperture through which the output beam passes. The lidar system may include mirrors driven by a galvanometer scanner, a resonant scanner, a microelectromechanical systems device, or a voice coil motor. The mirrors may direct the output beam toward a light source field of view (FOV) and may move the light source FOV to different locations within a field of regard. The mirrors may receive reflected portions of the output beam as an input beam and direct the input beam toward the reflecting surface of the overlap mirror. The lidar system may include a receiver to receive the input beam from the reflecting surface of the overlap mirror. The receiver may have a receiver FOV that moves synchronously with, and at least partially overlaps, the light source FOV.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: January 23, 2018
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Patent number: 9869754
    Abstract: In one embodiment, a system includes a first lidar sensor, which includes a first scanner configured to scan first pulses of light along a first scan pattern and a first receiver configured to detect scattered light from the first pulses of light. The system also includes a second lidar sensor, which includes a second scanner configured to scan second pulses of light along a second scan pattern and a second receiver configured to detect scattered light from the second pulses of light. The first scan pattern and the second scan pattern are at least partially overlapped. The system further includes an enclosure, where the first lidar sensor and the second lidar sensor are contained within the enclosure. The enclosure includes a window configured to transmit the first pulses of light and the second pulses of light.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: January 16, 2018
    Assignee: Luminar Technologies, Inc.
    Inventors: Scott R. Campbell, Rodger W. Cleye, Jason M. Eichenholz, Lane A. Martin, Matthew D. Weed
  • Patent number: 9857468
    Abstract: A lidar system with a pulsed laser diode configured to produce an optical seed pulse of light at an operating wavelength between approximately 1400 nm and approximately 1600 nm. The lidar system may also include an optical amplifier configured to amplify the optical seed pulse to produce an eye-safe output optical pulse that is emitted into a field of view. The optical amplifier may produce an amount of amplified spontaneous emission (ASE) associated with the output optical pulse. The lidar system may include an optical filter configured to filter the output optical pulse to reduce the associated ASE. The lidar system may also include a receiver configured to detect at least a portion of the output optical pulse reflected or scattered from the field of view.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: January 2, 2018
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Patent number: 9823353
    Abstract: A lidar system with a light source to emit a pulse of light into a field of view and a receiver to detect a return pulse of light which is reflected or scattered by a target in the field of view. The receiver may include an avalanche photodiode to generate an electrical-current pulse corresponding to the return pulse and a transimpedance amplifier to produce a voltage pulse that corresponds to the electrical-current pulse. A voltage amplifier may amplify the voltage pulse and a comparator may produce an edge signal when the amplified voltage pulse exceeds a threshold. A time-to-digital converter may determine a time interval based on an emission time of the pulse of light and based on the edge signal. A processor may determine a distance to the target using the time interval.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: November 21, 2017
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Publication number: 20170299721
    Abstract: A lidar system with a light source to emit a pulse of light into a field of view and a receiver to detect a return pulse of light which is reflected or scattered by a target in the field of view. The receiver may include an avalanche photodiode to generate an electrical-current pulse corresponding to the return pulse and a transimpedance amplifier to produce a voltage pulse that corresponds to the electrical-current pulse. A voltage amplifier may amplify the voltage pulse and a comparator may produce an edge signal when the amplified voltage pulse exceeds a threshold. A time-to-digital converter may determine a time interval based on an emission time of the pulse of light and based on the edge signal. A processor may determine a distance to the target using the time interval.
    Type: Application
    Filed: March 27, 2017
    Publication date: October 19, 2017
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin