Patents by Inventor Roger A. Quon

Roger A. Quon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190172747
    Abstract: Tooling apparatus and methods are provided to fabricate semiconductor devices in which controlled thermal annealing techniques are utilized to modulate microstructures of metallic interconnect structures. For example, an apparatus includes a single platform semiconductor processing chamber having first and second sub-chambers. The first sub-chamber is configured to receive a semiconductor substrate comprising a metallization layer formed on a dielectric layer, wherein a portion of the metallization layer is disposed within an opening etched in the dielectric layer, and to form a stress control layer on the metallization layer. The second sub-chamber comprises a programmable hot plate which is configured to perform a thermal anneal process to modulate a microstructure of the metallization layer while the stress control layer is disposed on the metallization layer, and without an air break between the process modules of forming the stress control layer and performing the thermal anneal process.
    Type: Application
    Filed: February 5, 2019
    Publication date: June 6, 2019
    Inventors: Roger A. Quon, Michael Rizzolo, Chih-Chao Yang
  • Patent number: 10256185
    Abstract: A method for fabricating a semiconductor structure includes the following steps. A substrate including a dielectric material is formed. A surface of the substrate is molecularly modified to convert the surface of the substrate to a nitrogen-enriched surface. A metal layer is deposited on the molecularly modified surface of the substrate interacting with the molecularly modified surface to form a nitridized metal layer.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: April 9, 2019
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Roger A. Quon, Hosadurga K. Shobha, Terry A. Spooner, Wei Wang, Chih-Chao Yang
  • Patent number: 10249532
    Abstract: Tooling apparatus and methods are provided to fabricate semiconductor devices in which controlled thermal annealing techniques are utilized to modulate microstructures of metallic interconnect structures. For example, an apparatus includes a single platform semiconductor processing chamber having first and second sub-chambers. The first sub-chamber is configured to receive a semiconductor substrate comprising a metallization layer formed on a dielectric layer, wherein a portion of the metallization layer is disposed within an opening etched in the dielectric layer, and to form a stress control layer on the metallization layer. The second sub-chamber comprises a programmable hot plate which is configured to perform a thermal anneal process to modulate a microstructure of the metallization layer while the stress control layer is disposed on the metallization layer, and without an air break between the process modules of forming the stress control layer and performing the thermal anneal process.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: April 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Quon, Michael Rizzolo, Chih-Chao Yang
  • Publication number: 20180350599
    Abstract: A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.
    Type: Application
    Filed: August 8, 2018
    Publication date: December 6, 2018
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Patent number: 10128147
    Abstract: Semiconductor structures include a patterned interlayer dielectric overlaying a semiconductor substrate. The interlayer dielectric includes a first dielectric layer and at least one additional dielectric layer disposed on the first dielectric layer, wherein the patterned interlayer dielectric comprises at least one opening extending through the interlayer dielectric to the semiconductor substrate. Chemically enriched regions including ions of Si, P, B, N, O and combinations thereof are disposed in surfaces of the first dielectric layer and the at least one dielectric layer defined by the at least one opening. Also described are methods of for forming an interconnect structure in a semiconductor structure.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: November 13, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Roger A. Quon, Terry A. Spooner, Wei Wang, Chih-Chao Yang
  • Patent number: 10121661
    Abstract: A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: November 6, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Publication number: 20180315703
    Abstract: A conductive interface includes a first conductor having a recessed area in least one surface. A dielectric layer has a trench positioned over the first conductor. A nitridized layer is formed on a top surface of the first conductor around the recessed area, to a depth on the first conductor that is shallower than a depth of the recessed area. A second conductor is formed in the trench and the recessed area to form a conductive contact with the first conductor.
    Type: Application
    Filed: June 21, 2018
    Publication date: November 1, 2018
    Inventors: Lawrence A. Clevenger, Roger A. Quon, Terry A. Spooner, Wei Wang, Chih -Chao Yang
  • Publication number: 20180300599
    Abstract: Technical solutions are described for configuring a synaptic array. An example computer implemented method includes selecting a first electronic circuit and a second electronic circuit from the synaptic array for executing a task. The method further includes connecting the first electronic circuit to the second electronic circuit to facilitate passage of electric current by forming a metallic protrusion to connect a first connector of the first electronic circuit and a second connector of the second electronic circuit.
    Type: Application
    Filed: April 12, 2017
    Publication date: October 18, 2018
    Inventors: SHAWN P. FETTEROLF, JIN-PING HAN, CHRISTIAN LAVOIE, PAUL S. MCLAUGHLIN, AHMET S. OZCAN, ROGER A. QUON
  • Patent number: 10083864
    Abstract: A method for forming conductive lines comprises forming a hardmask on an insulator layer, a planarizing layer on the hardmask, and a hardmask on the planarizing layer, removing exposed portions of a layer of sacrificial mandrel material to form first and second sacrificial mandrels on the hardmask, and depositing a layer of spacer material in the gap, and over exposed portions of the first and second sacrificial mandrels and the hardmask. Portions of the layer of spacer material are removed to expose the first and second sacrificial mandrels. A filler material is deposited between the first and second sacrificial mandrels. A portion of the filler material is removed to expose the first and second sacrificial mandrels. Portions of the layer of spacer material are removed to expose portions of the hardmask. A trench is formed in the insulator layer, and the trench is filled with a conductive material.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: September 25, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Patent number: 10068846
    Abstract: Conductive contacts include a first conductor disposed within a first dielectric layer, the first conductor having a recessed area in least one surface. A second dielectric layer is formed over the first dielectric layer, comprising a trench positioned over the first conductor. A second conductor is formed in the trench and the recessed area to form a conductive contact with the first conductor.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: September 4, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Roger A. Quon, Terry A. Spooner, Wei Wang, Chih-Chao Yang
  • Publication number: 20180247866
    Abstract: Tooling apparatus and methods are provided to fabricate semiconductor devices in which controlled thermal annealing techniques are utilized to modulate microstructures of metallic interconnect structures. For example, an apparatus includes a single platform semiconductor processing chamber having first and second sub-chambers. The first sub-chamber is configured to receive a semiconductor substrate comprising a metallization layer formed on a dielectric layer, wherein a portion of the metallization layer is disposed within an opening etched in the dielectric layer, and to form a stress control layer on the metallization layer. The second sub-chamber comprises a programmable hot plate which is configured to perform a thermal anneal process to modulate a microstructure of the metallization layer while the stress control layer is disposed on the metallization layer, and without an air break between the process modules of forming the stress control layer and performing the thermal anneal process.
    Type: Application
    Filed: February 27, 2017
    Publication date: August 30, 2018
    Inventors: Roger A. Quon, Michael Rizzolo, Chih-Chao Yang
  • Publication number: 20180233403
    Abstract: An interconnect structure having a pitch of less than 40 nanometers and a self-aligned quadruple patterning process for forming the interconnect structure includes three types of lines: a ? line defined by a patterned bottom mandrel formed in the self-aligned quadruple patterning process; a ? line defined by location underneath a top mandrel formed in the self-aligned quadruple patterning process; and an ? line defined by elimination located underneath neither the top mandrel or the bottom mandrel formed in the self-aligned quadruple patterning process. The interconnect structure further includes multi-track jogs selected from a group consisting of a ??? jog; a ??? jog; and ??? jog; a ??? jog, and combinations thereof. The first and third positions refer to the uncut line and the second position refers to the cut line in the self-aligned quadruple patterning process.
    Type: Application
    Filed: April 10, 2018
    Publication date: August 16, 2018
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A.M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Publication number: 20180233408
    Abstract: A method for forming conductive lines comprises forming a hardmask on an insulator layer, a planarizing layer on the hardmask, and a hardmask on the planarizing layer, removing exposed portions of a layer of sacrificial mandrel material to form first and second sacrificial mandrels on the hardmask, and depositing a layer of spacer material in the gap, and over exposed portions of the first and second sacrificial mandrels and the hardmask. Portions of the layer of spacer material are removed to expose the first and second sacrificial mandrels. A filler material is deposited between the first and second sacrificial mandrels. A portion of the filler material is removed to expose the first and second sacrificial mandrels. Portions of the layer of spacer material are removed to expose portions of the hardmask. A trench is formed in the insulator layer, and the trench is filled with a conductive material.
    Type: Application
    Filed: April 12, 2018
    Publication date: August 16, 2018
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A.M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Publication number: 20180197738
    Abstract: A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.
    Type: Application
    Filed: October 17, 2017
    Publication date: July 12, 2018
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Patent number: 9991156
    Abstract: An interconnect structure having a pitch of less than 40 nanometers and a self-aligned quadruple patterning process for forming the interconnect structure includes three types of lines: a ? line defined by a patterned bottom mandrel formed in the self-aligned quadruple patterning process; a ? line defined by location underneath a top mandrel formed in the self-aligned quadruple patterning process; and an ? line defined by elimination located underneath neither the top mandrel or the bottom mandrel formed in the self-aligned quadruple patterning process. The interconnect structure further includes multi-track jogs selected from a group consisting of a ??? jog; a ??? jog; an ??? jog; a ??? jog, and combinations thereof. The first and third positions refer to the uncut line and the second position refers to the cut line in the self-aligned quadruple patterning process.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: June 5, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Publication number: 20180151420
    Abstract: Semiconductor structures include a patterned interlayer dielectric overlaying a semiconductor substrate. The interlayer dielectric includes a first dielectric layer and at least one additional dielectric layer disposed on the first dielectric layer, wherein the patterned interlayer dielectric comprises at least one opening extending through the interlayer dielectric to the semiconductor substrate. Chemically enriched regions including ions of Si, P, B, N, O and combinations thereof are disposed in surfaces of the first dielectric layer and the at least one dielectric layer defined by the at least one opening. Also described are methods of for forming an interconnect structure in a semiconductor structure.
    Type: Application
    Filed: January 24, 2018
    Publication date: May 31, 2018
    Inventors: Lawrence A. Clevenger, Roger A. Quon, Terry A. Spooner, Wei Wang, Chih-Chao Yang
  • Patent number: 9972533
    Abstract: A method for forming conductive contacts on a wafer comprises forming a first hardmask, planarizing layer, second hardmask, and a layer of sacrificial mandrel material, and removing portions of the layer of sacrificial mandrel material to expose portions of the second hardmask and form a first and second sacrificial mandrel. Spacers are formed adjacent to the sacrificial mandrels. A filler material is deposited on the second hardmask, and a first mask is formed on the filler material. An exposed portion of the second sacrificial mandrel is removed to form a first cavity. The depth of the first cavity is increased. The first mask, portions of the first and second sacrificial mandrels, the filler material, portions of the second hardmask, the spacers, portions of the planarization layer and the first hardmask are removed. A second cavity is formed and the first and second cavities are filled with a conductive material.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: May 15, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole Saulnier
  • Patent number: 9953864
    Abstract: Semiconductor structures include a patterned interlayer dielectric overlaying a semiconductor substrate. The interlayer dielectric includes a first dielectric layer and at least one additional dielectric layer disposed on the first dielectric layer, wherein the patterned interlayer dielectric comprises at least one opening extending through the interlayer dielectric to the semiconductor substrate. Chemically enriched regions including ions of Si, P, B, N, O and combinations thereof are disposed in surfaces of the first dielectric layer and the at least one dielectric layer defined by the at least one opening. Also described are methods of for forming an interconnect structure in a semiconductor structure.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: April 24, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Roger A. Quon, Terry A. Spooner, Wei Wang, Chih-Chao Yang
  • Publication number: 20180102315
    Abstract: The surface area of a surface area-dependent semiconductor device is increased by providing a dielectric layer, removing portion(s) of the dielectric layer, resulting in recession(s), and forming surface area-dependent semiconductor device(s), a portion of the device being formed along a sidewall of one, or more, of the recession(s). The resulting semiconductor structure includes a dielectric layer having recession(s) therein, and surface area-dependent semiconductor device(s) having a portion thereof formed along a sidewall of the recession(s).
    Type: Application
    Filed: October 11, 2016
    Publication date: April 12, 2018
    Inventors: Roderick Alan AUGUR, Roger A. QUON, Shawn P. FETTEROLF
  • Patent number: 9934970
    Abstract: A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: April 3, 2018
    Assignee: International Business Machines Corporation
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier