Patents by Inventor Roger L. Farrow

Roger L. Farrow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7925125
    Abstract: A microfluidic detection device provides reduced dispersion of axial concentration gradients in a flowing sample. The microfluidic detection device includes a cell body and a flow path through the cell body. The flow path has an inlet segment, an outlet segment, and a central segment, which forms a detection cell. The central segment is located between and at an angle with both the inlet segment and the outlet segment. The central segment has a first junction with the inlet segment and a second junction with the outlet segment. The cell body contains two arms that can transmit light to and from the detection cell. At least a portion of a first arm is located in the first junction and at least a portion of a second arm is located in the second junction. The portions of the arms located in the junctions are situated so that fluid entering or exiting the central segment of the flow path flows around the outer surface of one of the portions.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: April 12, 2011
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Douglas R. Cyr, Roger L. Farrow, Don W. Arnold
  • Patent number: 7880961
    Abstract: An optical amplifier, such as an optical waveguide amplifier (e.g., an optical fiber amplifier or a planar waveguide) or a non-guiding optical amplifier, that exhibits a net phase-mismatch selected to at least partially reduce gain-induced phase-matching during operation thereof is disclosed. In one aspect of the invention, an optical amplifier structure includes at least one optical amplifier having a length and a gain region. The at least one optical amplifier exhibits a net phase-mismatch that varies along at least part of the length thereof selected to at least partially reduce gain-induced phase-matching during operation thereof.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: February 1, 2011
    Assignee: Sandia Corporation
    Inventors: Jean-Philippe Feve, Dahv A. V. Kliner, Roger L. Farrow
  • Publication number: 20080216951
    Abstract: A microfluidic detection device provides reduced dispersion of axial concentration gradients in a flowing sample. The microfluidic detection device includes a cell body and a flow path through the cell body. The flow path has an inlet segment, an outlet segment, and a central segment, which forms a detection cell. The central segment is located between and at an angle with both the inlet segment and the outlet segment. The central segment has a first junction with the inlet segment and a second junction with the outlet segment. The cell body contains two arms that can transmit light to and from the detection cell. At least a portion of a first arm is located in the first junction and at least a portion of a second arm is located in the second junction. The portions of the arms located in the junctions are situated so that fluid entering or exiting the central segment of the flow path flows around the outer surface of one of the portions.
    Type: Application
    Filed: February 12, 2008
    Publication date: September 11, 2008
    Inventors: Douglas R. Cyr, Roger L. Farrow, Don W. Arnold
  • Patent number: 7336860
    Abstract: A microfluidic detection device provides reduced dispersion of axial concentration gradients in a flowing sample. The microfluidic detection device includes a cell body and a flow path through the cell body. The flow path has an inlet segment, an outlet segment, and a central segment, which forms a detection cell. The central segment is located between and at an angle with both the inlet segment and the outlet segment. The central segment has a first junction with the inlet segment and a second junction with the outlet segment. The cell body contains two arms that can transmit light to and from the detection cell. At least a portion of a first arm is located in the first junction and at least a portion of a second arm is located in the second junction. The portions of the arms located in the junctions are situated so that fluid entering or exiting the central segment of the flow path flows around the outer surface of one of the portions.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: February 26, 2008
    Assignee: Eksigent Technologies, LLC
    Inventors: Douglas R. Cyr, Roger L. Farrow, Don W. Arnold
  • Patent number: 7050660
    Abstract: A microfluidic detection device provides reduced dispersion of axial concentration gradients in a flowing sample. The microfluidic detection device includes a cell body and a flow path through the cell body. The flow path has an inlet segment, an outlet segment, and a central segment, which forms a detection cell. The central segment is located between and at an angle with both the inlet segment and the outlet segment. The central segment has a first junction with the inlet segment and a second junction with the outlet segment. The cell body contains two arms that can transmit light to and from the detection cell. At least a portion of a first arm is located in the first junction and at least a portion of a second arm is located in the second junction. The portions of the arms located in the junctions are situated so that fluid entering or exiting the central segment of the flow path flows around the outer surface of one of the portions.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: May 23, 2006
    Assignee: Eksigent Technologies LLC
    Inventors: Douglas R. Cyr, Roger L. Farrow, Don W. Arnold
  • Patent number: 6963062
    Abstract: A method for multiplexed optical detection includes: imaging light onto an input face of a first optical fiber, wherein the first optical fiber is a multimode optical fiber; inducing coupling among the propagation modes of the light in the first optical fiber; coupling an output face of the first optical fiber to input faces of multiple individual second optical fibers in a multi-fiber bundle, wherein each output face of the individual fibers emits substantially similar light; and detecting one or more properties of one or more fluids, including analytes that may be present, with the light emitted from at least one of the second optical fibers. The second optical fibers can be a part of an optical detector that is part of a high performance liquid chromatography system, which can be located in a substrate.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: November 8, 2005
    Assignee: Eksigent Technologies, LLC
    Inventors: Douglas R. Cyr, Roger L. Farrow
  • Publication number: 20040197043
    Abstract: A microfluidic detection device provides reduced dispersion of axial concentration gradients in a flowing sample. The microfluidic detection device includes a cell body and a flow path through the cell body. The flow path has an inlet segment, an outlet segment, and a central segment, which forms a detection cell. The central segment is located between and at an angle with both the inlet segment and the outlet segment. The central segment has a first junction with the inlet segment and a second junction with the outlet segment. The cell body contains two arms that can transmit light to and from the detection cell. At least a portion of a first arm is located in the first junction and at least a portion of a second arm is located in the second junction. The portions of the arms located in the junctions are situated so that fluid entering or exiting the central segment of the flow path flows around the outer surface of one of the portions.
    Type: Application
    Filed: April 7, 2003
    Publication date: October 7, 2004
    Inventors: Douglas R. Cyr, Roger L. Farrow, Don W. Arnold
  • Publication number: 20040196459
    Abstract: A method for multiplexed optical detection includes: imaging light onto an input face of a first optical fiber, wherein the first optical fiber is a multimode optical fiber; inducing coupling among the propagation modes of the light in the first optical fiber; coupling an output face of the first optical fiber to input faces of multiple individual second optical fibers in a multi-fiber bundle, wherein each output face of the individual fibers emits substantially similar light; and detecting one or more properties of one or more fluids, including analytes that may be present, with the light emitted from at least one of the second optical fibers. The second optical fibers can be a part of an optical detector that is part of a high performance liquid chromatography system, which can be located in a substrate.
    Type: Application
    Filed: April 7, 2003
    Publication date: October 7, 2004
    Inventors: Douglas R. Cyr, Roger L. Farrow