Patents by Inventor Roger McAleenan

Roger McAleenan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11506686
    Abstract: Embodiments of the present disclosure use a customizable ganged waveguide that comprises a top metal plate and a bottom metal plate with trenches that come together in a way so as to form waveguide channels. The waveguide assembly of the present invention also comprises a waveguide adapter affixed to a first end of the ganged waveguide and operable to conduct the signal to a tester. Further, it comprises an air barrier affixed to a second end of the ganged waveguide to prevent air from flowing from the ganged waveguide to a printed circuit board connected at the second end. Finally, it comprises a tuning plate comprising double ridge slots configured to allow maximal signal to be transferred to the printed circuit board from the ganged waveguide.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: November 22, 2022
    Assignee: Advantest Corporation
    Inventors: Roger McAleenan, YuChang Liu
  • Publication number: 20210156889
    Abstract: Embodiments of the present disclosure use a customizable ganged waveguide that comprises a top metal plate and a bottom metal plate with trenches that come together in a way so as to form waveguide channels. The waveguide assembly of the present invention also comprises a waveguide adapter affixed to a first end of the ganged waveguide and operable to conduct the signal to a tester. Further, it comprises an air barrier affixed to a second end of the ganged waveguide to prevent air from flowing from the ganged waveguide to a printed circuit board connected at the second end. Finally, it comprises a tuning plate comprising double ridge slots configured to allow maximal signal to be transferred to the printed circuit board from the ganged waveguide.
    Type: Application
    Filed: July 1, 2020
    Publication date: May 27, 2021
    Inventors: Roger McAleenan, YuChang Liu
  • Patent number: 10944148
    Abstract: Embodiments described herein perform incisions along the direction of the long axis of the waveguide, thereby exposing a trench structure which can be readily plated. Once divided and plated, the individual cut pieces can then be secured together to restore the original waveguide structure. In this fashion, multiple cut pieces can be secured together and used as “building blocks” to create a modular solution which can be used to provide a number of different customizable waveguide structures. Thus, embodiments described herein can perform plating procedures in a less expensive manner while achieving the benefits of ganged waveguide structures. Moreover, embodiments described herein can offer a modular approach to ganged waveguide design thereby allowing for end-user flexibility in testing.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: March 9, 2021
    Assignee: ADVANTEST CORPORATION
    Inventors: Don Lee, Daniel Lam, Roger Mcaleenan, Kosuke Miyao
  • Patent number: 10663562
    Abstract: A method for characterizing a FM chirp signal generated by a device under test (DUT) is disclosed. The method comprises receiving a selection of a sample frequency and chirp duration for capturing the FM chirp signal. The method also comprises down converting the FM chirp signal and capturing the FM chirp signal using a digital pin electronics card. The method comprises obtaining a plurality of period measurements from the captured FM chirp signal using a timing measurement unit (TMU) of an automated test equipment (ATE) and converting each of the plurality of period measurements into corresponding frequency values.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: May 26, 2020
    Assignee: ADVANTEST CORPORATION
    Inventors: Roger McAleenan, Robert Bartlett
  • Patent number: 10401476
    Abstract: A method for characterizing a FM chirp signal generated by a device under test (DUT) is disclosed. The method comprises receiving a selection of a sample frequency and chirp duration for capturing the FM chirp signal. The method also comprises down converting the FM chirp signal and capturing the FM chirp signal using a digital pin electronics card. The method comprises obtaining a plurality of period measurements from the captured FM chirp signal using a timing measurement unit (TMU) of an automated test equipment (ATE) and converting each of the plurality of period measurements into corresponding frequency values.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: September 3, 2019
    Assignee: ADVANTEST CORPORATION
    Inventors: Roger McAleenan, Robert Bartlett
  • Patent number: 10393772
    Abstract: Embodiments of the present disclosure utilize customizable waveguide fabrication technologies (e.g., 3D printer technology) and patch antenna arrays to create adaptable wave interfaces that can provide efficient signal routing for an ATE system. In this fashion, embodiments of the present disclosure allow for arbitrary waveguide routing from port to port and create high density port spacing at the PCB level and which specifically eliminates the large flange required of prior art waveguides. Furthermore, embodiments include the ability to integrate different waveguide components, including power splitters, couplers, terminations, etc., into a single structure. Thus, embodiments of the present disclosure can reduce signal path losses and simplify the mechanical construction of ATE systems while eliminating the need for coax cables and minimizing the length of PCB microstrips.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: August 27, 2019
    Assignee: ADVANTEST CORPORATION
    Inventors: Don Lee, Daniel Lam, Roger McAleenan, Kosuke Miyao
  • Patent number: 10381707
    Abstract: Embodiments of the present disclosure use customizable waveguides that can be positioned next to each other in a structure that contains one single flange to provide a physical connection for the waveguides. In this fashion, many waveguides can be positioned within a small area to accommodate a tightly packed patch antenna array so that the waveguides can be positioned very close to the socket. As such, embodiments of the present disclosure allow more waveguides to be packed into a small area by providing a single structure that houses many waveguides and share only a single flange connection element that can be sized appropriately.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: August 13, 2019
    Assignee: ADVANTEST CORPORATION
    Inventors: Don Lee, Daniel Lam, Roger Mcaleenan, Kosuke Miyao
  • Patent number: 10371741
    Abstract: A method for characterizing a phase shifter in a device under test (DUT) using automated test equipment (ATE) is disclosed. The method comprises down converting an input signal received from the transmitter DUT to an intermediate frequency and routing the down converted input signal to a signal processor, wherein the signal processor generates I and Q signals using the input signal. The method further comprises setting an initial phase state on the phase shifter in the transmitter DUT and toggling at least one phase state bit to control the phase shifter to cycle through a plurality of phase states, wherein the changing phase states appear on the I and Q signals. Finally, the method comprises processing the I and Q signals to extract individual phase states programmed by the at least one phase state bit.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: August 6, 2019
    Assignee: ADVANTEST CORPORATION
    Inventor: Roger McAleenan
  • Publication number: 20190154798
    Abstract: A method for characterizing a FM chirp signal generated by a device under test (DUT) is disclosed. The method comprises receiving a selection of a sample frequency and chirp duration for capturing the FM chirp signal. The method also comprises down converting the FM chirp signal and capturing the FM chirp signal using a digital pin electronics card. The method comprises obtaining a plurality of period measurements from the captured FM chirp signal using a timing measurement unit (TMU) of an automated test equipment (ATE) and converting each of the plurality of period measurements into corresponding frequency values.
    Type: Application
    Filed: January 29, 2019
    Publication date: May 23, 2019
    Inventors: Roger McAleenan, Robert Bartlett
  • Patent number: 10114067
    Abstract: A structure for signal transmission is disclosed. The structure comprises a first plurality of waveguides tightly disposed together and disposed substantially in parallel with each other, each of said waveguides having a first opening and a second opening, wherein each first opening is operable to align with a patch antenna, and wherein the first plurality of waveguides is disposed adjacent to a socket. The integrated structure further comprises the socket which comprises an opening operable to support an insertion of a device under test (DUT), wherein the DUT is communicatively coupled to a plurality of microstrip transmission lines on a printed circuit board (PCB) underlying the socket for transmitting test signals from the DUT, wherein each of the microstrip transmission lines is electrically coupled to a respective patch antenna. Further, the first plurality of waveguides and the socket are integrated into a single plastic or metal structure.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: October 30, 2018
    Assignee: ADVANTEST CORPORATION
    Inventors: Daniel Lam, Don Lee, Roger McAleenan, Kosuke Miyao
  • Publication number: 20180011171
    Abstract: A method for characterizing a phase shifter in a device under test (DUT) using automated test equipment (ATE) is disclosed. The method comprises down converting an input signal received from the transmitter DUT to an intermediate frequency and routing the down converted input signal to a signal processor, wherein the signal processor generates I and Q signals using the input signal. The method further comprises setting an initial phase state on the phase shifter in the transmitter DUT and toggling at least one phase state bit to control the phase shifter to cycle through a plurality of phase states, wherein the changing phase states appear on the I and Q signals. Finally, the method comprises processing the I and Q signals to extract individual phase states programmed by the at least one phase state bit.
    Type: Application
    Filed: July 11, 2016
    Publication date: January 11, 2018
    Inventor: Roger McAleenan
  • Publication number: 20170229754
    Abstract: Embodiments of the present disclosure utilize customizable waveguide fabrication technologies (e.g., 3D printer technology) and patch antenna arrays to create adaptable wave interfaces that can provide efficient signal routing for an ATE system. In this fashion, embodiments of the present disclosure allow for arbitrary waveguide routing from port to port and create high density port spacing at the PCB level and which specifically eliminates the large flange required of prior art waveguides. Furthermore, embodiments include the ability to integrate different waveguide components, including power splitters, couplers, terminations, etc., into a single structure. Thus, embodiments of the present disclosure can reduce signal path losses and simplify the mechanical construction of ATE systems while eliminating the need for coax cables and minimizing the length of PCB microstrips.
    Type: Application
    Filed: February 4, 2016
    Publication date: August 10, 2017
    Inventors: Don LEE, Daniel LAM, Roger MCALEENAN, Kosuke MIYAO
  • Publication number: 20170227598
    Abstract: A structure for signal transmission is disclosed. The structure comprises a first plurality of waveguides tightly disposed together and disposed substantially in parallel with each other, each of said waveguides having a first opening and a second opening, wherein each first opening is operable to align with a patch antenna, and wherein the first plurality of waveguides is disposed adjacent to a socket. The integrated structure further comprises the socket which comprises an opening operable to support an insertion of a device under test (DUT), wherein the DUT is communicatively coupled to a plurality of microstrip transmission lines on a printed circuit board (PCB) underlying the socket for transmitting test signals from the DUT, wherein each of the microstrip transmission lines is electrically coupled to a respective patch antenna. Further, the first plurality of waveguides and the socket are integrated into a single plastic or metal structure.
    Type: Application
    Filed: February 4, 2016
    Publication date: August 10, 2017
    Inventors: Daniel LAM, Don LEE, Roger MCALEENAN, Kosuke MIYAO
  • Publication number: 20170229757
    Abstract: Embodiments of the present disclosure perform incisions along the direction of the long axis of the waveguide, thereby exposing a trench structure which can be readily plated. Once divided and plated, the individual cut pieces can then be secured together to restore the original waveguide structure. In this fashion, multiple cut pieces can be secured together and used as “building blocks” to create a modular solution which can be used to provide a number of different customizable waveguide structures. Thus, embodiments of the present disclosure perform plating procedures in a less expensive manner while achieving the benefits of ganged waveguide structures. Moreover, embodiments of the present disclosure offer a modular approach to ganged waveguide design thereby allowing for end-user flexibility in testing.
    Type: Application
    Filed: February 4, 2016
    Publication date: August 10, 2017
    Inventors: Don LEE, Daniel LAM, Roger MCALEENAN, Kosuke MIYAO
  • Publication number: 20170229753
    Abstract: Embodiments of the present disclosure use customizable waveguides that can be positioned next to each other in a structure that contains one single flange to provide a physical connection for the waveguides. In this fashion, many waveguides can be positioned within a small area to accommodate a tightly packed patch antenna array so that the waveguides can be positioned very close to the socket. As such, embodiments of the present disclosure allow more waveguides to be packed into a small area by providing a single structure that houses many waveguides and share only a single flange connection element that can be sized appropriately.
    Type: Application
    Filed: February 4, 2016
    Publication date: August 10, 2017
    Inventors: Don LEE, Daniel LAM, Roger MCALEENAN, Kosuke MIYAO
  • Publication number: 20160291131
    Abstract: A method for characterizing a FM chirp signal generated by a device under test (DUT) is disclosed. The method comprises receiving a selection of a sample frequency and chirp duration for capturing the FM chirp signal. The method also comprises down converting the FM chirp signal and capturing the FM chirp signal using a digital pin electronics card. The method comprises obtaining a plurality of period measurements from the captured FM chirp signal using a timing measurement unit (TMU) of an automated test equipment (ATE) and converting each of the plurality of period measurements into corresponding frequency values.
    Type: Application
    Filed: March 21, 2016
    Publication date: October 6, 2016
    Inventors: Roger McAleenan, Robert Bartlett