Patents by Inventor Roger Richter

Roger Richter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240097253
    Abstract: A method for managing a state of charge (SOC) of an energy store of a vehicle comprising storing an encoding of a dynamic weight value, computationally determining an estimated travel time to a stopover location, using the estimated travel time to modify the dynamic weight value to provide an updated dynamic weight value, and responsive to providing the updated dynamic weight value, increasing the SOC of the energy store while the vehicle travels over a roadway to provide a target SoC of the energy store when the vehicle arrives at the stopover location.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Roger Richter, Morgan Culbertson
  • Patent number: 11932232
    Abstract: Through-the-road (TTR) hybrid designs using control strategies such as an equivalent consumption minimization strategy (ECMS) or an adaptive ECMS are implemented at the supplemental torque delivering electrically-powered drive axle (or axles) in a manner that follows operational parameters or computationally estimates states of the primary drivetrain and/or fuel-fed engine, but does not itself participate in control of the fuel-fed engine or primary drivetrain. BSFC type data particular to the paired-with fuel-fed engine allows an ECMS implementation (or other similar control strategy) to adapt to efficiency curves for the particular fuel-fed engine and to improve overall efficiencies of the TTR hybrid configuration.
    Type: Grant
    Filed: May 11, 2022
    Date of Patent: March 19, 2024
    Assignee: Hyliion Inc.
    Inventors: Roger Richter, Jamie Noland, Morgan Culbertson
  • Publication number: 20240034191
    Abstract: A vehicle is proposed to control regeneration and reuse of captured energy in a through-the-road hybrid configuration. The vehicle comprises a vehicle frame, an energy store, and a controller. The vehicle frame is configured for over-the-roadway travel under a power of plural drive axles. At least one of the plural drive axles is coupled via a primary drivetrain to a fuel-fed engine to drive at least a pair of wheels. At least one other of the plural drive axles is an electrically-powered drive axle configured to supply supplemental torque to additional wheels. The energy store is configured to supply the electrically-powered drive axle with electrical power in a first mode of operation and receive energy recovered using the electrically-powered drive axle in a second mode of operation. The controller is coupled between the electrically-powered drive axle and one or more sensor inputs to transition between different modes of operation.
    Type: Application
    Filed: August 16, 2023
    Publication date: February 1, 2024
    Inventors: Thomas Joseph Healy, Wilson Sa, Morgan Culbertson, Eric Schmidt, Roger Richter
  • Patent number: 11876236
    Abstract: A vehicle with a hybrid drivetrain including a fuel-fed engine coupled to a first drive axle, an electric motor coupled to a second drive axle and an APU for providing electrical power at stopover locations, and further including a controller for determining a location of the vehicle, a location of a stopover location, determining a target SOC of a battery for operating the APU at the stopover location and operating a hybrid control system to provide the target SOC for the vehicle at the stopover location.
    Type: Grant
    Filed: November 18, 2022
    Date of Patent: January 16, 2024
    Assignee: Hyliion Inc.
    Inventors: Roger Richter, Morgan Culbertson
  • Patent number: 11766951
    Abstract: A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a truck, a tractor unit, a trailer, a tractor-trailer configuration, at a tandem, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: September 26, 2023
    Assignee: Hyliion Inc.
    Inventors: Thomas Joseph Healy, Wilson Sa, Morgan Culbertson, Eric Schmidt, Roger Richter
  • Publication number: 20230082369
    Abstract: A vehicle with a hybrid drivetrain including a fuel-fed engine coupled to a first drive axle, an electric motor coupled to a second drive axle and an APU for providing electrical power at stopover locations, and further including a controller for determining a location of the vehicle, a location of a stopover location, determining a target SOC of a battery for operating the APU at the stopover location and operating a hybrid control system to provide the target SOC for the vehicle at the stopover location.
    Type: Application
    Filed: November 18, 2022
    Publication date: March 16, 2023
    Inventors: Roger Richter, Morgan Culbertson
  • Publication number: 20230059385
    Abstract: A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a truck, a tractor unit, a trailer, a tractor-trailer configuration, at a tandem, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
    Type: Application
    Filed: September 23, 2022
    Publication date: February 23, 2023
    Inventors: Thomas Joseph HEALY, Wilson SA, Morgan CULBERTSON, Eric SCHMIDT, Roger RICHTER
  • Patent number: 11527799
    Abstract: A vehicle with a hybrid drivetrain including a fuel-fed engine coupled to a first drive axle, an electric motor coupled to a second drive axle and an APU for providing electrical power at stopover locations, and further including a controller for determining a location of the vehicle, a location of a stopover location, determining a target SOC of a battery for operating the APU at the stopover location and operating a hybrid control system to provide the target SOC for the vehicle at the stopover location.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: December 13, 2022
    Assignee: HYLIION INC.
    Inventors: Roger Richter, Morgan Culbertson
  • Patent number: 11479144
    Abstract: A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a truck, a tractor unit, a trailer, a tractor-trailer configuration, at a tandem, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: October 25, 2022
    Assignee: Hyliion Inc.
    Inventors: Thomas Joseph Healy, Wilson Sa, Morgan Culbertson, Eric Schmidt, Roger Richter
  • Publication number: 20220266813
    Abstract: Through-the-road (TTR) hybrid designs using control strategies such as an equivalent consumption minimization strategy (ECMS) or an adaptive ECMS are implemented at the supplemental torque delivering electrically-powered drive axle (or axles) in a manner that follows operational parameters or computationally estimates states of the primary drivetrain and/or fuel-fed engine, but does not itself participate in control of the fuel-fed engine or primary drivetrain. BSFC type data particular to the paired-with fuel-fed engine allows an ECMS implementation (or other similar control strategy) to adapt to efficiency curves for the particular fuel-fed engine and to improve overall efficiencies of the TTR hybrid configuration.
    Type: Application
    Filed: May 11, 2022
    Publication date: August 25, 2022
    Inventors: Roger Richter, Jamie Noland, Morgan Culbertson
  • Patent number: 11351979
    Abstract: Through-the-road (TTR) hybrid designs using control strategies such as an equivalent consumption minimization strategy (ECMS) or an adaptive ECMS are implemented at the supplemental torque delivering electrically-powered drive axle (or axles) in a manner that follows operational parameters or computationally estimates states of the primary drivetrain and/or fuel-fed engine, but does not itself participate in control of the fuel-fed engine or primary drivetrain. BSFC type data particular to the paired-with fuel-fed engine allows an ECMS implementation (or other similar control strategy) to adapt to efficiency curves for the particular fuel-fed engine and to improve overall efficiencies of the TTR hybrid configuration.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: June 7, 2022
    Assignee: Hyliion Inc.
    Inventors: Roger Richter, Jamie Noland, Morgan Culbertson
  • Patent number: 11325498
    Abstract: A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a truck, a tractor unit, a trailer, a tractor-trailer configuration, at a tandem, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
    Type: Grant
    Filed: October 31, 2020
    Date of Patent: May 10, 2022
    Assignee: Hyliion Inc.
    Inventors: Thomas Joseph Healy, Wilson Sa, Morgan Culbertson, Eric Schmidt, Roger Richter
  • Publication number: 20220062809
    Abstract: A filter support system may include, but is not limited to: an anti-microbial mesh; and a frame configured to at least partially retain a filter such that at least a portion of fluid flow through the filter interacts with the anti-microbial mesh. The anti-microbial mesh may be constructed at least partially from a copper-containing material.
    Type: Application
    Filed: September 2, 2020
    Publication date: March 3, 2022
    Inventor: Roger Richter
  • Publication number: 20210376415
    Abstract: A vehicle with a hybrid drivetrain including a fuel-fed engine coupled to a first drive axle, an electric motor coupled to a second drive axle and an APU for providing electrical power at stopover locations, and further including a controller for determining a location of the vehicle, a location of a stopover location, determining a target SOC of a battery for operating the APU at the stopover location and operating a hybrid control system to provide the target SOC for the vehicle at the stopover location.
    Type: Application
    Filed: August 13, 2021
    Publication date: December 2, 2021
    Inventors: Roger Richter, Morgan Culbertson
  • Patent number: 11094988
    Abstract: Systems and methods to control recapture and use of energy to provide an APU include a vehicle having an electrically powered drive axle to provide supplemental torque to the vehicle to supplement primary motive forces applied through a separate drivetrain powered by a fuel-fed engine of the vehicle. The vehicle further includes an energy store to supply the electrically powered drive axle with electrical power or receive energy recovered using the electrically powered drive axle. The vehicle also includes the APU coupled to receive electrical power from the energy store for stopover operation and without idling of the fuel-fed engine. Further, the vehicle includes a hybrid control system for managing, based on an estimated travel time to a stopover location, an SoC of the energy store while the vehicle travels over a roadway to provide a target SoC of the energy store when the vehicle arrives at the stopover location.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: August 17, 2021
    Assignee: Hyliion Inc.
    Inventors: Roger Richter, Morgan Culbertson
  • Patent number: 11046302
    Abstract: Through-the-road (TTR) hybrid designs using control strategies such as an equivalent consumption minimization strategy (ECMS) or adaptive ECMS are implemented at the supplemental torque delivering electrically-powered drive axle (or axles) in a manner that follows operational parameters or computationally estimates states of the primary drivetrain and/or fuel-fed engine, but does not itself participate in control of the fuel-fed engine or primary drivetrain. Crowdsourced distributions of adaptations and/or selections of BSFC type data allow ECMS implementations (or other similar control strategies) employ efficiency curves for a particular paired-with fuel-fed engine and/or operating conditions and to improve overall efficiencies of the TTR hybrid configuration. In some cases, signatures are used to identify appropriate BSFC type data for crowdsourced dissemination.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: June 29, 2021
    Assignee: Hyliion Inc.
    Inventors: Roger Richter, Jamie Noland, Morgan Culbertson
  • Publication number: 20210046845
    Abstract: A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a truck, a tractor unit, a trailer, a tractor-trailer configuration, at a tandem, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
    Type: Application
    Filed: October 31, 2020
    Publication date: February 18, 2021
    Applicant: Hyliion Inc.
    Inventors: Thomas Joseph HEALY, Wilson SA, Morgan CULBERTSON, Eric SCHMIDT, Roger RICHTER
  • Publication number: 20210016678
    Abstract: A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a truck, a tractor unit, a trailer, a tractor-trailer configuration, at a tandem, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 21, 2021
    Inventors: Thomas Joseph HEALY, Wilson SA, Morgan CULBERTSON, Eric SCHMIDT, Roger RICHTER
  • Patent number: 10889288
    Abstract: Through-the-road (TTR) hybrid designs using control strategies such as an equivalent consumption minimization strategy (ECMS) or adaptive ECMS are implemented at the supplemental torque delivering electrically-powered drive axle (or axles) in a manner that follows operational parameters or computationally estimates states of the primary drivetrain and/or fuel-fed engine, but does not itself participate in control of the fuel-fed engine or primary drivetrain. On vehicle adaptation of BSFC type data for paired-with fuel-fed engine allows an ECMS implementation (or other similar control strategy) to refine efficiency curves for the particular fuel-fed engine and/or operating conditions in a manner that can improve overall efficiencies of a TTR hybrid configuration.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: January 12, 2021
    Assignee: HYLIION INC.
    Inventors: Roger Richter, Jamie Noland, Morgan Culbertson
  • Patent number: 10821853
    Abstract: A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a truck, a tractor unit, a trailer, a tractor-trailer configuration, at a tandem, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: November 3, 2020
    Assignee: HYLIION INC.
    Inventors: Thomas Joseph Healy, Wilson Sa, Morgan Culbertson, Eric Schmidt, Roger Richter