Patents by Inventor Roger Steadman

Roger Steadman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8633572
    Abstract: It is described a low ohmic Through Wafer Interconnection (TWI) for electronic chips formed on a semiconductor substrate (600). The TWI comprises a first connection extending between a front surface and a back surface of the substrate (600). The first connection (610) comprises a through hole filled with a low ohmic material having a specific resistivity lower than poly silicon. The TWI further comprises a second connection (615) also extending between the front surface and the back surface. The second connection (615) is spatially separated from the first connection (610) by at least a portion of the semiconductor substrate (600). The front surface is provided with a integrated circuit arrangement (620) wherein the first connection (610) is electrically coupled to at least one node of the integrated circuit arrangement (620) without penetrating the integrated circuit arrangement (620). During processing the TWI the through hole may be filled first with a non-metallic material, e.g. poly silicon.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: January 21, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Gereon Vogtmeier, Roger Steadman, Ralf Dorscheid, Jeroen Jonkers
  • Patent number: 8618471
    Abstract: The invention is directed at an apparatus (10), an imaging device and a method for detecting X-ray photons, in particular photons (32,34) in a computer tomograph. Photons (32,34) are converted into an electrical pulse and compared against a threshold using a discriminator (20). The electrical network (12) performing these functions comprises a switching element (28), that can modify the electrical path (22) along which the process signals travel. The trigger signal (VT) for actuating the switching element (28) is derived from an electrical state of the electrical path (22). If a pulse associated to a photon (32,34) is detected, the switching element (28) is actuated in order to avoid that the processing of the charge pulse stemming from a first photon (32) is affected by a subsequent second photon (34).
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: December 31, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Roger Steadman, Guenter Zeitler, Christoph Herrmann, Christian Baeumer
  • Patent number: 8592773
    Abstract: The present invention relates to processing electronics (18) for a detector (12) of an X-ray imaging device (14), the processing electronics (18) with a pulse counter section (22) having at least one count output (30) and with an integrator section (24) having an intensity output (32), wherein the processing electronics (18) is adapted to be connected to a sensor (16) in such a manner that X-ray photons (58) arriving at the sensor (16) can be processed by the pulse counter section (22), by the integrator section (24), or both, and wherein the processing electronics (18) comprises a processor (34) adapted to be connected to the count output (30) and to the intensity output (32) and adapted to output a count result (K) that takes into account both count information (N) obtained at the count output (30) and intensity information (I) obtained at the intensity output (32), so that the count result (K) contains information (N) obtained from the pulse counter section (22) and information (M) obtained from the integr
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: November 26, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Christian Baeumer, Guenter Zeitler, Klaus Juergen Engel, Christoph Herrmann, Roger Steadman Booker
  • Patent number: 8581200
    Abstract: The invention relates to a radiation detector (200), particularly an X-ray detector, which comprises at least one sensitive layer (212) for the conversion of incident photons (X) into electrical signals. A two-dimensional array of electrodes (213) is located on the front side of the sensitive layer (212), while its back side carries a counter-electrode (211). The size of the electrodes (213) may vary in radiation direction (y) for adapting the counting workload of the electrodes. Moreover, the position of the electrodes (213) with respect to the radiation direction (y) provides information about the energy of the detected photons (X).
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: November 12, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Klaus Jürgen Engel, Guenter Zeitler, Christian Baeumer, Christoph Herrmann, Jens Wiegert, Roland Proksa, Ewald Rössl, Roger Steadman Booker
  • Publication number: 20130284940
    Abstract: The invention relates to a detection device (6) for detecting photons emitted by a radiation source (2). A signal generation unit (20) generates a detection signal indicative of the energy of a detected photon while photons strike the detection device (6), and a baseline signal, which is affected by photons that previously struck the detection device (6), while photons are prevented from striking the detection device (6). A baseline shift determination unit (40) determines a baseline shift of the detection signal depending on the baseline signal. An energy determination unit (30) determines the energy of a detected photon depending on the detection signal and the determined baseline shift. Since the baseline shift of the detection signal is determined from a baseline signal that is generated while photons are prevented from striking the detection device (6), the baseline shift can be determined with higher accuracy, resulting in an improved energy determination.
    Type: Application
    Filed: December 27, 2011
    Publication date: October 31, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Roger Steadman Booker, Oliver Muelhens
  • Patent number: 8515147
    Abstract: The invention relates to an X-ray imaging device, particularly a Spectral-CT scanner, that comprises an X-ray source for generating X-radiation with an energy spectrum which varies continuously during an observation period. In a preferred embodiment, the radiation is attenuated in an object according to an energy-dependent attenuation coefficient ?, the transmitted radiation is measured by sensor units of a detector, and the resulting measurement signal is sampled and A/D converted. This is preferably done by an oversampling A/D converter, for example a ??-ADC. The tube voltage that drives the X-ray source is sampled with high frequency. In an evaluation system, these sampled measurement values can be associated with corresponding effective energy spectra to determine the energy dependent attenuation coefficient ?.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: August 20, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Christian Baeumer, Roger Steadman Booker, Gereon Vogtmeier, Thomas Scheel, Christoph Loef
  • Patent number: 8513613
    Abstract: The invention relates to a radiation detector (100), particularly for X-rays (X) and for ?-rays, which comprises a combination of (a) at least one primary conversion layer (101a-101f) with a low attenuation coefficient for the photons and (b) at least one secondary conversion layer (102) with a high attenuation coefficient for the photons. In preferred embodiments, the primary conversion layer (101a-101f) may be realized by a silicon layer coupled to associated energy-resolving counting electronics (111a-111f, 121). The secondary conversion layer (102) may be realized for example by CZT or GOS coupled to energy-resolving counting electronics or integrating electronics. Using primary conversion layers with low stopping power allows to build a stacked radiation detector (100) for spectral CT in which the counting rates of the layers are limited to feasible values without requiring unrealistic thin layers.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: August 20, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Herrmann, Christian Baeumer, Roger Steadman Booker, Guenter Zeitler
  • Publication number: 20130168557
    Abstract: The invention relates to a radiation detector (100) and an associated method for the detection of (e.g. X or ?-) radiation. The detector (100) comprises a converter element (110) in which incident photons (X) are converted into electrical signals, and an array of anodes (130) for generating an electrical field (E) in the converter element (110). At least two anodes are associated with two steering electrodes (140) to which different potentials can be applied by a control unit (150). Preferably, each single anode or small group of anodes is surrounded by one steering electrode. The potentials of the steering electrodes (140) may be set as a function of the potentials that are induced in these electrodes when an operating voltage is applied between the anodes and a cathode (120). Moreover, a grid electrode (160) may be provided that at least partially encircles anodes (130) and their steering electrodes (140).
    Type: Application
    Filed: September 7, 2011
    Publication date: July 4, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Klaus Jurgen Engel, Roger Steadman Booker
  • Patent number: 8461542
    Abstract: The invention relates to a radiation detector and a method for its production, wherein a series of converter plates (110) and interconnect layers (120), which extend into a border volume (BV) lateral of the converter plates (110), are stacked. By filling voids in the border volume (BV) with an underfill material and cutting through the border volume, a contact surface (CS) is generated in which electrical leads (123) of the interconnect layers (120) lie free. To allow a good contacting, said leads (123) are preferably provided with enlargements in the contact surface, for example by bonding wires (132) to them.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: June 11, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Rob Van Asselt, Cornelis Slob, Nicolaas Johannes Anthonius Van Veen, Christian Baeumer, Roger Steadman Booker, Christoph Herrmann, Johannes Wilhelmus Weekamp, Klaus Jurgen Engel
  • Patent number: 8378307
    Abstract: An imaging system includes a scintillator array (202) and a digital photomultiplier array (204). A photon counting channel (212), an integrating channel (210), and a moment generating channel (214) process the output signal of the digital photomultiplier array (204). A reconstructor (122) spectrally resolves the first, the second and the third output signals. In one embodiment, a controller (232) activates the photon counting channel (212) to process the digital signal only if a radiation flux is below a predetermined threshold. An imaging system includes at least one direct conversion layer (302) and at least two scintillator layers (304) and corresponding photosensors (306). A photon counting channel (212) processes an output of the at least one direct conversion layer (302), and an integrating channel (210) and a moment generating channel (214) process respective outputs of the photosensors (306). A reconstructor (122) spectrally resolves the first, the second and the third output signals.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: February 19, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Christian Baeumer, Christoph Herrmann, Roger Steadman, Walter Ruetten
  • Patent number: 8373132
    Abstract: The invention relates to a radiation detector and a method for producing such a detector, wherein the detector comprises a stack of the scintillator elements and photodiode arrays. The PDAs extend with electrical leads into a rigid body filling a border volume lateral of the scintillator elements, wherein said leads end in a contact surface of the border volume. Moreover, a redistribution layer is disposed on the contact surface, wherein electrical lines of the redistribution layer contact the leads of the PDAs.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: February 12, 2013
    Assignee: Koninklijke Philips Electronics N. V.
    Inventors: Christian Baeumer, Oliver Muelhens, Roger Steadman Booker, Christoph Herrmann
  • Patent number: 8357944
    Abstract: The invention relates to semiconductor substrates and methods for producing such semiconductor substrates. In this connection, it is the object of the invention to provide semiconductor substrates which can be produced more cost-effectively and with which a high arrangement density as well as good electrical conductivity and closed surfaces can be achieved. In accordance with the invention, an electrically conductive connection is guided from its front side through the substrate up to the rear side. The electrically conductive connection is completely surrounded from the outside. The insulator is formed by an opening which is filled with material. The inner wall is provided with a dielectric coating and/or filled with an electrically insulating or conductive material. The electrically conductive connection is formed with a further opening which is filled with an electrically conductive material and is arranged in the interior of the insulator.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: January 22, 2013
    Assignees: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V., Koninklijke Philips Electronics, N.V.
    Inventors: Christian Drabe, Alexander Wolter, Roger Steadman, Andreas Bergmann, Gereon Vogtmeier, Ralf Dorscheid
  • Patent number: 8350221
    Abstract: The present invention relates to an apparatus (10) for generating countable pulses (30) from impinging X-ray (12, 14) in an imaging device (16), in particular in a computer tomograph, the apparatus (10) comprising a pre-amplifying element (18) adapted to convert a charge pulse (20) generated by an impinging photon (12, 14) into an electrical signal (22) and a shaping element (26) having a feedback loop (28) and adapted to convert the electrical signal (22) into an electrical pulse (30), wherein a delay circuit (38) is connected to the feedback loop (28) such that a time during which the feedback loop (28) collects charges of the electrical signal (22) is extended in order to improve an amplitude of the electrical pulse (30) at an output (56) of the shaping element (26). The invention also relates to a corresponding imaging device (16) and a corresponding method.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: January 8, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Roger Steadman Booker, Christian Baeumer, Christoph Herrmann, Guenter Zeitler, Hans Krüger, Walter Ruetten, Oliver Muelhens
  • Publication number: 20120228486
    Abstract: A radiation detector assembly (20) includes a detector array module (40) configured to convert radiation particles to electrical detection pulses, and an application specific integrated circuit (ASIC) (42) operatively connected with the detector array. The ASIC includes signal processing circuitry (60) configured to digitize an electrical detection pulse received from the detector array, and test circuitry (80) configured to inject a test electrical pulse into the signal processing circuitry. The test circuitry includes a current meter (84) configured to measure the test electrical pulse injected into the signal processing circuitry, and a charge pulse generator (82) configured to generate a test electrical pulse that is injected into the signal processing circuitry.
    Type: Application
    Filed: December 7, 2010
    Publication date: September 13, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Roger Steadman, Oliver Muelhens
  • Patent number: 8237128
    Abstract: The present invention relates to an apparatus (10) for counting X-ray photons (12, 14). The apparatus (10) comprises a sensor (16) adapted to convert a photon (12, 14) into a charge pulse, a processing element (18) adapted to convert the charge pulse (51) into an electrical pulse (53) and a first discriminator (20) adapted to compare the electrical pulse (53) against a first threshold (TH1) and to output an event (55) if the first threshold (TH1) is exceeded. A first counter (22) counts these events (55), unless counting is inhibited by a first gating element (24). The first gating element (24) is activated when the first discriminator (20) outputs the event (55), and it is deactivated, when the processing of a photon (12, 14) is found to be complete or about to be completed by a measurement or by the knowledge about the time that it takes to process a photon (12, 14) in the processing element (18). By activating and deactivating the first counter (22) pile-up events, i.e.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: August 7, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Roger Steadman Booker, Christian Baeumer, Christoph Herrmann, Guenter Zeitler
  • Publication number: 20120085915
    Abstract: The present invention relates to processing electronics (18) for a detector (12) of an X-ray imaging device (14), the processing electronics (18) with a pulse counter section (22) having at least one count output (30) and with an integrator section (24) having an intensity output (32), wherein the processing electronics (18) is adapted to be connected to a sensor (16) in such a manner that X-ray photons (58) arriving at the sensor (16) can be processed by the pulse counter section (22), by the integrator section (24), or both, and wherein the processing electronics (18) comprises a processor (34) adapted to be connected to the count output (30) and to the intensity output (32) and adapted to output a count result (K) that takes into account both count information (N) obtained at the count output (30) and intensity information (I) obtained at the intensity output (32), so that the count result (K) contains information (N) obtained from the pulse counter section (22) and information (M) obtained from the integr
    Type: Application
    Filed: September 23, 2008
    Publication date: April 12, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christian Baeumer, Guenter Zeitler, Klaus Juergen Engel, Christoph Herrmann, Roger Steadman Booker
  • Publication number: 20120032085
    Abstract: An imaging system includes a scintillator array (202) and a digital photomultiplier array (204). A photon counting channel (212), an integrating channel (210), and a moment generating channel (214) process the output signal of the digital photomultiplier array (204). A reconstructor (122) spectrally resolves the first, the second and the third output signals. In one embodiment, a controller (232) activates the photon counting channel (212) to process the digital signal only if a radiation flux is below a predetermined threshold. An imaging system includes at least one direct conversion layer (302) and at least two scintillator layers (304) and corresponding photosensors (306). A photon counting channel (212) processes an output of the at least one direct conversion layer (302), and an integrating channel (210) and a moment generating channel (214) process respective outputs of the photosensors (306). A reconstructor (122) spectrally resolves the first, the second and the third output signals.
    Type: Application
    Filed: March 15, 2010
    Publication date: February 9, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christian Baeumer, Christoph Herrmann, Roger Steadman, Walter Ruetten
  • Patent number: 8018067
    Abstract: Through-Wafer Interconnections allow for the usage of cost-effective substrates for detector chips. According to an exemplary embodiment of the present invention, detecting element for application in an examination apparatus may be provided, comprising a wafer with a sensitive region and a coaxial through-wafer interconnect structure. This may reduce the susceptibility of the interconnection by providing an effective shielding.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: September 13, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Roger Steadman, Gereon Vogtmeier, Ralf Dorsheid
  • Publication number: 20110211669
    Abstract: The invention relates to a radiation detector (100) comprising a converter element (113) with an array (120) of first electrodes (121) for sampling electrical signals generated by incident radiation (X). With a connection circuit (130), at least two first electrodes (121) can selectively be coupled to a common readout unit (141) according to a given connection pattern (CP1). The effective pixel size along the path of incident radiation (X) can thus be adapted to the distribution of electrical signals, which is usually determined by the spectral composition of the incident radiation.
    Type: Application
    Filed: November 9, 2009
    Publication date: September 1, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Christian Baeumer, Roger Steadman Booker
  • Publication number: 20110211668
    Abstract: The invention relates to converter element (100) for a radiation detector, particularly for a Spectral CT scanner. The converter element (100) comprises at least two conversion cells (131) that are at least partially separated from each other by intermediate separation walls (135) which affect the spreading of electrical signals generated by incident radiation (X). The conversion cells (131) may particularly consist of a crystal of CdTe and/or CdZnTe. Said crystal is preferably grown by e.g. vapor deposition between preformed separation walls.
    Type: Application
    Filed: November 9, 2009
    Publication date: September 1, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Roger Steadman Booker, Matthias Simon, Christoph Herrmann, Bernd Menser, Jens Wiegert, Klaus Juergen Engel, Christian Baeumer, Oliver Muelhens