Patents by Inventor Roman Amberger

Roman Amberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9517009
    Abstract: A method for non-invasive observations of a fundus using an ophthalmoscope is provided. The method includes illuminating a retinal region of an eye by projecting an illumination pattern of illumination light onto the retinal region, at least one of detecting a portion of fluorescent light emitted from the retinal region and detecting a portion of illumination light reflected from the retinal region, thereby capturing a series of images of the retinal region at a plurality of different relative positions of the retinal region with respect to the illumination pattern projected onto the retinal region, wherein between the capturing of at least two images of the series the relative position of the retinal region with respect to the illumination pattern projected onto the retinal region is shifted in a non-controlled manner, and processing the captured images to extract a sub-resolution image of the retinal region.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: December 13, 2016
    Assignees: Ruprecht-Karls-Universit├Ąt Heidelberg, Friedrich-Schiller-Universit├Ąt Jena
    Inventors: Christoph Cremer, Gerrit Best, Roman Amberger, Rainer Heintzmann, Stefan Dithmar, Thomas Ach
  • Publication number: 20150297076
    Abstract: A method for non-invasive observations of a fundus using an ophthalmoscope is provided. The method includes illuminating a retinal region of an eye by projecting an illumination pattern of illumination light onto the retinal region, at least one of detecting a portion of fluorescent light emitted from the retinal region and detecting a portion of illumination light reflected from the retinal region, thereby capturing a series of images of the retinal region at a plurality of different relative positions of the retinal region with respect to the illumination pattern projected onto the retinal region, wherein between the capturing of at least two images of the series the relative position of the retinal region with respect to the illumination pattern projected onto the retinal region is shifted in a non-controlled manner, and processing the captured images to extract a sub-resolution image of the retinal region.
    Type: Application
    Filed: September 26, 2013
    Publication date: October 22, 2015
    Inventors: Christoph Cremer, Gerrit Best, Roman Amberger, Rainer Heintzmann, Stefan Dithmar, Thomas Ach
  • Publication number: 20150260978
    Abstract: A method for obtaining a sub-resolution image of a specimen using a microscope is provided. The method includes projecting an illumination pattern of illumination light onto the specimen, thereby illuminating the specimen, at least one of detecting at least a portion of fluorescent light emitted from the specimen and detecting at least a portion of illumination light reflected from the specimen, thereby capturing a series of images of the specimen at a plurality of different relative positions of the specimen with respect to the illumination pattern projected onto the specimen, wherein between the capturing of at least two images of the series the relative position of the specimen with respect to the illumination pattern projected onto the specimen is shifted in a non-controlled manner, and processing the captured images to extract a sub-resolution image of the specimen.
    Type: Application
    Filed: September 26, 2013
    Publication date: September 17, 2015
    Inventors: Christoph Cremer, Gerrit Best, Roman Amberger, Rainer Heintzmann
  • Patent number: 8174761
    Abstract: A total internal reflection microscope for epi-fluorescence illumination observations includes an objective through which an object to be observed is illuminated by an excitation illumination light at an angle to an observation axis of the microscope. The angle is adjustable to be within the range suitable for a total internal reflection observation. The microscope also has a source of collimated excitation light. An interferometer is arranged in the optical path of the collimated excitation light and is configured to produce an interference pattern. A focusing lens system focuses the interference pattern produced by the interferometer into the back focal plane of the objective. The objective and the focusing lens system image the interference pattern produced by the interferometer into the conjugated image plane of the objective, thereby producing excitation illumination light that modulated spatially in intensity in a plane orthogonal to the observation axis of the microscope.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: May 8, 2012
    Assignee: Universitat Heidelberg
    Inventors: Roman Amberger, Christoph Cremer, Heinz Eipel
  • Publication number: 20100315708
    Abstract: A total internal reflection microscope for epi-fluorescence illumination observations includes an objective through which an object to be observed is illuminated by an excitation illumination light at an angle to an observation axis of the microscope. The angle is adjustable to be within the range suitable for a total internal reflection observation. The microscope also has a source of collimated excitation light. An interferometer is arranged in the optical path of the collimated excitation light and is configured to produce an interference pattern. A focusing lens system focuses the interference pattern produced by the interferometer into the back focal plane of the objective. The objective and the focusing lens system image the interference pattern produced by the interferometer into the conjugated image plane of the objective, thereby producing excitation illumination light that modulated spatially in intensity in a plane orthogonal to the observation axis of the microscope.
    Type: Application
    Filed: June 10, 2009
    Publication date: December 16, 2010
    Applicant: UNIVERSITAT HEIDELBERG
    Inventors: Roman Amberger, Christoph Cremer, Heinz Eipel