Patents by Inventor Ronald A. Kapusta, Jr.

Ronald A. Kapusta, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11041722
    Abstract: Systems and methods for sensing angular motion using a microelectromechanical system (MEMS) gyroscope are described. These systems and methods may be useful for sensing angular motion in the presence of low-frequency noise, which may be noise below 1 KHz. In a system for sensing angular motion, low-frequency noise may give rise to duty cycle jitter, which may affect the demodulation of the sense signal and cause errors in angular motion estimates. The systems and methods described herein address this problem by relying on double-edge phase detection technique that involves sensing when the rising and falling edges of the resonator signal deviate from their expected values in the idealized 50% duty cycle scenario. To prevent the formation of ripples in the double-edge phase detection that may otherwise affect the demodulation of the sense signal, a switch may be used. The switch may be maintained in a non-conductive state when a ripple is received.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: June 22, 2021
    Assignee: Analog Devices, Inc.
    Inventors: Jiefeng Yan, William A. Clark, Ronald A. Kapusta, Jr.
  • Patent number: 10852136
    Abstract: A method for detecting frequency mismatch in microelectromechanical systems (MEMS) gyroscopes is described. Detection of the frequency mismatch between a drive signal and a sense signal may be performed by generating an output signal whose spectrum reflects the physical characteristics of the gyroscope, and using the output signal to determine the frequency fC of the sense signal. The output signal may be generated by cross-correlating a random or pseudo-random noise signal with a response signal, where the response signal can be obtained by allowing the noise signal to pass through a system designed to have a noise transfer function that mimics the frequency response of the gyroscope. Since the noise signal is random or pseudo-random, cross-correlating the noise signal with the response signal reveals spectral characteristics of the gyroscope. To improve computational efficiency, the cross-correlation can be performed on demodulated versions of the noise signal and the response signal.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: December 1, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Jiefeng Yan, Ronald A. Kapusta, Jr., Jianrong Chen
  • Patent number: 10578435
    Abstract: Circuits and methods for compensating microelectromechanical system (MEMS) gyroscopes for quality factor variations are described. Quality factor variations arise when mechanical losses are introduced in the gyroscope's resonator, for example due to thermoelastic damping or squeeze-film damping, which may hinder the gyroscope's ability to accurately sense angular velocity. Quality factor compensation may be performed by generating a compensation signal having a time decay rate that depends on the quality factor of resonator. In this way, artifacts that may otherwise arise in gyroscope's output are limited. Additionally, or alternatively, quality factor compensation may be performed by controlling the force with which the gyroscope's resonator is driven. This may be achieved, for example, by controlling the average value of the drive signal.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: March 3, 2020
    Assignee: Analog Devices, Inc.
    Inventors: James Lin, Ronald A. Kapusta, Jr., Lijun Gao
  • Publication number: 20200025566
    Abstract: Systems and methods for sensing angular motion using a microelectromechanical system (MEMS) gyroscope are described. These systems and methods may be useful for sensing angular motion in the presence of low-frequency noise, which may be noise below 1 KHz. In a system for sensing angular motion, low-frequency noise may give rise to duty cycle jitter, which may affect the demodulation of the sense signal and cause errors in angular motion estimates. The systems and methods described herein address this problem by relying on double-edge phase detection technique that involves sensing when the rising and falling edges of the resonator signal deviate from their expected values in the idealized 50% duty cycle scenario. To prevent the formation of ripples in the double-edge phase detection that may otherwise affect the demodulation of the sense signal, a switch may be used. The switch may be maintained in a non-conductive state when a ripple is received.
    Type: Application
    Filed: July 23, 2018
    Publication date: January 23, 2020
    Applicant: Analog Devices, Inc.
    Inventors: Jiefeng Yan, William A. Clark, Ronald A. Kapusta, JR.
  • Publication number: 20190219394
    Abstract: Circuits and methods for compensating microelectromechanical system (MEMS) gyroscopes for quality factor variations are described. Quality factor variations arise when mechanical losses are introduced in the gyroscope's resonator, for example due to thermoelastic damping or squeeze-film damping, which may hinder the gyroscope's ability to accurately sense angular velocity. Quality factor compensation may be performed by generating a compensation signal having a time decay rate that depends on the quality factor of resonator. In this way, artifacts that may otherwise arise in gyroscope's output are limited. Additionally, or alternatively, quality factor compensation may be performed by controlling the force with which the gyroscope's resonator is driven. This may be achieved, for example, by controlling the average value of the drive signal.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 18, 2019
    Applicant: Analog Devices, Inc.
    Inventors: James Lin, Ronald A. Kapusta, JR., Lijun Gao
  • Patent number: 10247600
    Abstract: Systems and techniques are described for matching the resonance frequencies of multiple resonators. In some embodiments, a resonator generates an output signal reflecting the resonator's response to an input drive signal and an input noise signal. The output signal is then compared to the noise signal to derive a signal representative of the resonance frequency of the resonator. Comparing that signal to the output signal of a second resonator gives an indication of whether there is a difference between the resonance frequencies of the two resonators. If there is, one or both of the resonators may be adjusted. In this manner, the resonance frequencies of resonators may be matched during normal operation of the resonators.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: April 2, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Youn-Jae Kook, Jose Barreiro Silva, Jianrong Chen, Ronald A. Kapusta, Jr.
  • Publication number: 20190063923
    Abstract: A method for detecting frequency mismatch in microelectromechanical systems (MEMS) gyroscopes is described. Detection of the frequency mismatch between a drive signal and a sense signal may be performed by generating an output signal whose spectrum reflects the physical characteristics of the gyroscope, and using the output signal to determine the frequency fC of the sense signal. The output signal may be generated by cross-correlating a random or pseudo-random noise signal with a response signal, where the response signal can be obtained by allowing the noise signal to pass through a system designed to have a noise transfer function that mimics the frequency response of the gyroscope. Since the noise signal is random or pseudo-random, cross-correlating the noise signal with the response signal reveals spectral characteristics of the gyroscope. To improve computational efficiency, the cross-correlation can be performed on demodulated versions of the noise signal and the response signal.
    Type: Application
    Filed: August 30, 2017
    Publication date: February 28, 2019
    Applicant: Analog Devices, Inc.
    Inventors: Jiefeng Yan, Ronald A. Kapusta, JR., Jianrong Chen
  • Publication number: 20180128674
    Abstract: Systems and techniques are described for matching the resonance frequencies of multiple resonators. In some embodiments, a resonator generates an output signal reflecting the resonator's response to an input drive signal and an input noise signal. The output signal is then compared to the noise signal to derive a signal representative of the resonance frequency of the resonator. Comparing that signal to the output signal of a second resonator gives an indication of whether there is a difference between the resonance frequencies of the two resonators. If there is, one or both of the resonators may be adjusted. In this manner, the resonance frequencies of resonators may be matched during normal operation of the resonators.
    Type: Application
    Filed: November 10, 2016
    Publication date: May 10, 2018
    Applicant: Analog Devices, Inc.
    Inventors: Youn-Jae Kook, Jose Barreiro Silva, Jianrong Chen, Ronald A. Kapusta, JR.
  • Patent number: 8339118
    Abstract: In one aspect, a method of reducing power consumption in a circuit by adaptive bias current generation of a bias current configured to bias, at least in part, at least one amplifier of the circuit is provided. The method comprises establishing the bias current based, at least in part, on a reference frequency of a reference clock providing a clock signal to at least one component of the circuit, and changing the bias current in response to a change in the reference frequency of the at least one reference clock, the bias current being change non-linearly with respect to the change in the reference frequency of the at least one reference clock. In another aspect, the method comprises establishing the bias current based, at least in part, on a capacitance of a reference capacitor, and changing the bias current in response to a change in the capacitance of the reference capacitor such that the bias current is changed non-linearly with respect to changes in the capacitance of the reference capacitor.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: December 25, 2012
    Assignee: Analog Devices, Inc.
    Inventor: Ronald A. Kapusta, Jr.
  • Patent number: 8223892
    Abstract: An apparatus and method for inter-channel data exchange in multi-channel data acquisition systems is disclosed. A multi-channel data acquisition system may include a data exchange layer coupling two or more channels of the data acquisition system. Data may be transmitted via the data exchange layer between the channels, enabling data from one channel to be processed and output by another channel. The data exchange layer may include a serial exchange layer or a parallel exchange layer.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: July 17, 2012
    Assignee: Analog Devices, Inc.
    Inventors: Ronald A. Kapusta, Jr., Hiroto Shinozaki, Katsufumi Nakamura
  • Publication number: 20110298643
    Abstract: In one aspect, a method of reducing power consumption in a circuit by adaptive bias current generation of a bias current configured to bias, at least in part, at least one amplifier of the circuit is provided. The method comprises establishing the bias current based, at least in part, on a reference frequency of a reference clock providing a clock signal to at least one component of the circuit, and changing the bias current in response to a change in the reference frequency of the at least one reference clock, the bias current being change non-linearly with respect to the change in the reference frequency of the at least one reference clock. In another aspect, the method comprises establishing the bias current based, at least in part, on a capacitance of a reference capacitor, and changing the bias current in response to a change in the capacitance of the reference capacitor such that the bias current is changed non-linearly with respect to changes in the capacitance of the reference capacitor.
    Type: Application
    Filed: August 17, 2011
    Publication date: December 8, 2011
    Applicant: Analog Devices, Inc.
    Inventor: Ronald A. Kapusta, JR.
  • Patent number: 8044654
    Abstract: In one aspect, a method of reducing power consumption in a circuit by adaptive bias current generation of a bias current configured to bias, at least in part, at least one amplifier of the circuit is provided. The method comprises establishing the bias current based, at least in part, on a reference frequency of a reference clock providing a clock signal to at least one component of the circuit, and changing the bias current in response to a change in the reference frequency of the at least one reference clock, the bias current being change non-linearly with respect to the change in the reference frequency of the at least one reference clock. In another aspect, the method comprises establishing the bias current based, at least in part, on a capacitance of a reference capacitor, and changing the bias current in response to a change in the capacitance of the reference capacitor such that the bias current is changed non-linearly with respect to changes in the capacitance of the reference capacitor.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: October 25, 2011
    Assignee: Analog Devices, Inc.
    Inventor: Ronald A. Kapusta, Jr.
  • Patent number: 8008962
    Abstract: The invention is directed to an interface circuit for bridging voltage domains. The interface circuit receives an input signal, having a larger voltage domain, and safely provides the signal to an electronic device which has a smaller voltage domain. The interface circuit may include a transistor configured as a source follow so that an output of the transistor follows the input of the transistor. A blocking voltage may be provided at the input of the transistor to provide a voltage bias, blocking a range of input voltages to the transistor. The transistor may also have a blocking voltage at a drain terminal of the transistor, to block any output voltage above the blocking voltage.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: August 30, 2011
    Assignee: Analog Devices, Inc.
    Inventors: Ronald A. Kapusta, Jr., Katsu Nakamura, Eitake Ibaragi
  • Patent number: 7821296
    Abstract: Two or more buffers may configured and arranged such that a quiescent current that flows through and biases a first buffer also flows through and biases a second buffer. The first and second buffers may, for example, be source followers used as reference buffers that drive inputs of a switched-capacitor circuit.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: October 26, 2010
    Assignee: Analog Devices, Inc.
    Inventors: Lawrence A. Singer, Ronald A. Kapusta, Jr.
  • Patent number: 7710198
    Abstract: In one aspect, a resistor process invariant transconductor is provided. The transconductor comprises a voltage input configured to receive at least one voltage signal, a current output configured to provide at least one current signal, wherein a ratio between the at least one voltage signal and the least one current signal forms a total transconductance for the transconductor, and a circuit including at least one integrated resistor connected between the voltage input and the current output, the circuit adapted to maintain the total transconductance substantially constant across variation of the at least one integrated resistor.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: May 4, 2010
    Assignee: Analog Devices, Inc.
    Inventor: Ronald A. Kapusta, Jr.
  • Publication number: 20100026359
    Abstract: The invention is directed to an interface circuit for bridging voltage domains. The interface circuit receives an input signal, having a larger voltage domain, and safely provides the signal to an electronic device which has a smaller voltage domain. The interface circuit may include a transistor configured as a source follow so that an output of the transistor follows the input of the transistor. A blocking voltage may be provided at the input of the transistor to provide a voltage bias, blocking a range of input voltages to the transistor. The transistor may also have a blocking voltage at a drain terminal of the transistor, to block any output voltage above the blocking voltage.
    Type: Application
    Filed: May 18, 2009
    Publication date: February 4, 2010
    Applicant: Analog Devices, Inc.
    Inventors: Ronald A. KAPUSTA, JR., Katsu NAKAMURA, Eitake IBARAGI
  • Publication number: 20090238309
    Abstract: An apparatus and method for inter-channel data exchange in multi-channel data acquisition systems is disclosed. A multi-channel data acquisition system may include a data exchange layer coupling two or more channels of the data acquisition system. Data may be transmitted via the data exchange layer between the channels, enabling data from one channel to be processed and output by another channel. The data exchange layer may include serial or parallel communication means.
    Type: Application
    Filed: March 18, 2008
    Publication date: September 24, 2009
    Applicant: Analog Devices, Inc.
    Inventors: Ronald A. Kapusta, JR., Hiroto Shinozaki, Katsufumi Nakamura
  • Patent number: 7477087
    Abstract: In one embodiment, a circuit comprises at least first and second circuit stages, at least one level shifting circuit, and a control circuit. The first circuit stage is configured and arranged to produce a reference voltage at the at least one first output during each first phase of at least first and second phases, and to produce an output signal at the at least one first output that is responsive to an input signal at the at least one first input during each second phase of the at least first and second phases. The at least one level shifting circuit comprises at least one capacitor and at least one switch and is coupled between the first circuit stage and the second circuit stage.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: January 13, 2009
    Assignee: Analog Devices, Inc.
    Inventor: Ronald A. Kapusta, Jr.
  • Publication number: 20080284406
    Abstract: In one aspect, a method of reducing power consumption in a circuit by adaptive bias current generation of a bias current configured to bias, at least in part, at least one amplifier of the circuit is provided. The method comprises establishing the bias current based, at least in part, on a reference frequency of a reference clock providing a clock signal to at least one component of the circuit, and changing the bias current in response to a change in the reference frequency of the at least one reference clock, the bias current being change non-linearly with respect to the change in the reference frequency of the at least one reference clock. In another aspect, the method comprises establishing the bias current based, at least in part, on a capacitance of a reference capacitor, and changing the bias current in response to a change in the capacitance of the reference capacitor such that the bias current is changed non-linearly with respect to changes in the capacitance of the reference capacitor.
    Type: Application
    Filed: May 19, 2008
    Publication date: November 20, 2008
    Applicant: Analog Devices, Inc.
    Inventor: Ronald A. Kapusta, JR.
  • Patent number: 7298151
    Abstract: Methods and apparatus for reducing the thermal noise integrated on a storage element are disclosed. One embodiment of the invention is directed to a sampling circuit comprising a sampling capacitor to store a charge, the sampling capacitor being exposed to an ambient temperature. The sampling circuit further comprises circuitry to sample the charge onto the capacitor, wherein thermal noise is also sampled onto the capacitor, and wherein the circuitry is constructed such that the power of the thermal noise sampled onto the capacitor is less than the product of the ambient temperature and Boltzmann's constant divided by a capacitance of the sampling capacitor. Another embodiment of the invention is directed to a method of controlling thermal noise sampled onto a capacitor. The method comprises an act of independently controlling the spectral density of the thermal noise and/or the bandwidth of the thermal noise.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: November 20, 2007
    Assignee: Analog Devices, Inc.
    Inventors: Ronald A. Kapusta, Jr., Katsufumi Nakamura