Patents by Inventor Ronald Adams

Ronald Adams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120172899
    Abstract: A system including an implantable fastener for fastening layers of tissue is disclosed. In one embodiment, the fastener includes a proximal anchor member and a distal anchor member each being movable from a reduced profile position to a deployed position. The anchor members are mesh structures capable of moving to the deployed position by reducing the axial spacing between opposite ends of the anchor members. Methods of treating gastroesophageal reflux disease (GERD) are also disclosed. One of the methods includes placing the distal anchor member through a hole formed in the wall of the esophagus and through a hole formed in the gastric wall. The distal anchor member and the proximal anchor member are then placed in their deployed positions to fasten the wall of the esophagus and the gastric wall together between the anchor members.
    Type: Application
    Filed: March 14, 2012
    Publication date: July 5, 2012
    Inventor: Ronald Adams
  • Patent number: 8157836
    Abstract: A system including an implantable fastener for fastening layers of tissue is disclosed. In one embodiment, the fastener includes a proximal anchor member and a distal anchor member each being movable from a reduced profile position to a deployed position. The anchor members are mesh structures capable of moving to the deployed position by reducing the axial spacing between opposite ends of the anchor members. Methods of treating gastroesophageal reflux disease (GERD) are also disclosed. One of the methods includes placing the distal anchor member through a hole formed in the wall of the esophagus and through a hole formed in the gastric wall. The distal anchor member and the proximal anchor member are then placed in their deployed positions to fasten the wall of the esophagus and the gastric wall together between the anchor members.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: April 17, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Ronald Adams
  • Publication number: 20120078271
    Abstract: A distal assembly of an endoscopic surgical device, and a related method, having a first arm and a second arm pivotal relative to the first arm. Each arm is configured to hold a part of a two-part fastener at a distal end of the arm. A closing mechanism is positioned proximate a proximal end of each of the first and second arms opposite the distal end of each of the first and second arms. The dosing mechanism is configured to move in relation to the first and second arms so as to close over at least one of the first and second arms to cause the distal ends of the arms to come together. An actuation member is also attached to the closing mechanism actuable to cause the closing mechanism to move in relation to the first and second arms.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 29, 2012
    Inventor: Ronald Adams
  • Patent number: 8097662
    Abstract: Oxygen-scavenging polymers and packaging for holding oxygen-sensitive products. A heat treatment process has been found to significantly increase the oxygen-scavenging performance of the polymer. The enhanced scavenging polymer can be effectively incorporated into various packaging, including transparent multilayer containers for beer and juice. In one embodiment, a multilayer package made from the scavenger provides an actual reduction in oxygen content of a contents of the package, over a long period of time (e.g., 24 weeks). The package can be stored unfilled for an extended period (without significant loss of scavenging capability) and will scavenge substantially immediately upon filling with a liquid product. The package may incorporate a relatively low weight percentage of the scavenger, thus providing enhanced scavenging in a cost-effective manner.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: January 17, 2012
    Assignee: Graham Packaging PET Technologies, Inc.
    Inventors: Steven L. Schmidt, Brian Lynch, Keith Barker, Ronald Adams, Sr., Amit S. Agrawal
  • Patent number: 8043207
    Abstract: A proximal housing for a full-thickness resection device (FTRD) is provided with a plurality of chambers through which fasteners are introduced into a portion of tissue to be resected. The proximal housing has a noncircular cut-out opposite the plurality of chambers to receive a noncircular endoscope. The proximal housing also is provided with a resection cavity into which the tissue to be resected is to be received. In addition, shaft openings are provided through which mounting shafts may be inserted. A noncircular endoscope is also disclosed for insertion into the cut-out whereby the endoscope has passages to house the functions of remote viewing, illumination, insufflation and irrigation.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: October 25, 2011
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Ronald Adams
  • Patent number: 8043310
    Abstract: A distal assembly of an endoscopic surgical device, and a related method, having a first arm and a second arm pivotal relative to the first arm. Each arm is configured to hold a part of a two-part fastener at a distal end of the arm. A closing mechanism is positioned proximate a proximal end of each of the first and second arms opposite the distal end of each of the first and second arms. The closing mechanism is configured to move in relation to the first and second arms so as to close over at least one of the first and second arms to cause the distal ends of the arms to come together. An actuation member is also attached to the closing mechanism actuable to cause the closing mechanism to move in relation to the first and second arms.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: October 25, 2011
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Ronald Adams
  • Publication number: 20110257479
    Abstract: A controllable sheath for optimizing the control of surgical instruments at the operation site includes a flexible sheath surrounding an endoscope and including a lumen extending along the walls of the sheath and adjacent to the endoscope. The lumen permits the passage of surgical instruments from the proximal end of the endoscopic device to the operation site. The lumen extends beyond the distal end of the endoscope and deflects at the distal end as desired by the operator's manipulation of a controller device. This distal end deflection may occur through various different techniques where the ability to deflect the lumen gives the operator increased control and maneuverability over the surgical implements located in the lumen. Depending upon the particular requirements of the surgical procedure, the controllable sheath may include any number of lumens capable of distal end deflection.
    Type: Application
    Filed: April 22, 2011
    Publication date: October 20, 2011
    Inventors: Ronald Adams, Michael Banik, Charles Pugsley
  • Patent number: 7951072
    Abstract: A controllable sheath for optimizing the control of surgical instruments at the operation site includes a flexible sheath surrounding an endoscope and including a lumen extending along the walls of the sheath and adjacent to the endoscope. The lumen permits the passage of surgical instruments from the proximal end of the endoscopic device to the operation site. The lumen extends beyond the distal end of the endoscope and deflects at the distal end as desired by the operator's manipulation of a controller device. This distal end deflection may occur through various different techniques where the ability to deflect the lumen gives the operator increased control and maneuverability over the surgical implements located in the lumen. Depending upon the particular requirements of the surgical procedure, the controllable sheath may include any number of lumens capable of distal end deflection.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: May 31, 2011
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Ronald Adams, Michael Banik, Charles Pugsley
  • Publication number: 20080153939
    Abstract: Oxygen-scavenging polymers and packaging for holding oxygen-sensitive products. A heat treatment process has been found to significantly increase the oxygen-scavenging performance of the polymer. The enhanced scavenging polymer can be effectively incorporated into various packaging, including transparent multilayer containers for beer and juice. In one embodiment, a multilayer package made from the scavenger provides an actual reduction in oxygen content of a contents of the package, over a long period of time (e.g., 24 weeks). The package can be stored unfilled for an extended period (without significant loss of scavenging capability) and will scavenge substantially immediately upon filling with a liquid product. The package may incorporate a relatively low weight percentage of the scavenger, thus providing enhanced scavenging in a cost-effective manner.
    Type: Application
    Filed: January 30, 2008
    Publication date: June 26, 2008
    Applicant: Graham Packaging PET Technologies Inc.
    Inventors: Steven L. Schmidt, Brian Lynch, Keith Barker, Ronald Adams, Amit S. Agrawal
  • Publication number: 20080065127
    Abstract: An operating head for a full thickness resection system includes a first optical device disposed on a distal portion thereof and having a viewing area extending distally of the distal portion and a working chamber extending within an exterior wall of the operating head, a first portion of the exterior wall being moveable with respect to a second portion thereof to selectively open the working chamber to an exterior of the operating head. Furthermore, the operating head includes a second optical device mounted within the working chamber with a viewing area of the second optical device extending distally therefrom.
    Type: Application
    Filed: November 15, 2007
    Publication date: March 13, 2008
    Inventor: Ronald Adams
  • Publication number: 20060264705
    Abstract: A controllable sheath for optimizing the control of surgical instruments at the operation site includes a flexible sheath surrounding an endoscope and including a lumen extending along the walls of the sheath and adjacent to the endoscope. The lumen permits the passage of surgical instruments from the proximal end of the endoscopic device to the operation site. The lumen extends beyond the distal end of the endoscope and deflects at the distal end as desired by the operator's manipulation of a controller device. This distal end deflection may occur through various different techniques where the ability to deflect the lumen gives the operator increased control and maneuverability over the surgical implements located in the lumen. Depending upon the particular requirements of the surgical procedure, the controllable sheath may include any number of lumens capable of distal end deflection.
    Type: Application
    Filed: May 2, 2006
    Publication date: November 23, 2006
    Inventors: Ronald Adams, Michael Banik, Charles Pugsley
  • Publication number: 20060241662
    Abstract: A method and device for performing endoluminal fundoplication are described. A device is inserted in the patient's stomach through the esophagus, including an unit adapted to grasp and pull a portion of the gastroesophageal junction into the stomach, and an unit adapted to move a portion of the fundus towards the esophagus. The device also can place fasteners to hold the gastric wall and the esophageal wall secured together, thus forming a valve between esophagus and stomach. An adhesive compound can be used to stabilize the juncture of the two walls.
    Type: Application
    Filed: June 27, 2006
    Publication date: October 26, 2006
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Ronald Adams, Charles Pugsley
  • Publication number: 20060191975
    Abstract: Describeed is a full-thickness resection system which includes a control unit coupled to a proximal end of a flexible endoscope. The control unit remains outside of a body when the stapling head is in an operative position within a body lumen. The control unit includes (i) an anvil actuator coupled to an anvil in the stapling head, actuation of the anvil actuator moves the anvil axially relative to a stapling mechanism in the stapling head to compress a folded full-thickness portion of lumenal tissue between the anvil and the stapling mechanism. In addition, the control unit includes (ii) a stapler actuator coupled to the stapling mechanism in the stapling head, actuation of the stapler actuator causing the stapling mechanism to drive staples through the folded lumenal tissue against the anvil.
    Type: Application
    Filed: April 25, 2006
    Publication date: August 31, 2006
    Inventors: Ronald Adams, Roy Sullivan, George Nunez, Lauren Main, Peter Kratsch, Jurgen Kortenbach, Matt Solar, Gerhard Buess, Marc Schurr
  • Patent number: 7070559
    Abstract: A controllable sheath for optimizing the control of surgical instruments at the operation site includes a flexible sheath surrounding an endoscope and including a lumen extending along the walls of the sheath and adjacent to the endoscope. The lumen permits the passage of surgical instruments from the proximal end of the endoscopic device to the operation site. The lumen extends beyond the distal end of the endoscope and deflects at the distal end as desired by the operator's manipulation of a controller device. This distal end deflection may occur through various different techniques where the ability to deflect the lumen gives the operator increased control and maneuverability over the surgical implements located in the lumen. Depending upon the particular requirements of the surgical procedure, the controllable sheath may include any number of lumens capable of distal end deflection.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: July 4, 2006
    Assignee: Scimed Life Systems, Inc.
    Inventors: Ronald Adams, Michael Banik, Charles Pugsley
  • Publication number: 20060135849
    Abstract: Described is a tissue resection system which includes a guide element; a resection head; a positioning mechanism and an actuating mechanism. The resection head includes a guide channel slidably receiving the guide element and an endoscope channel sized to slidably receive an endoscope therein, so that, when the resection head is slid along the guide element, the endoscope and the resection head follow a path defined by the guide element. The positioning mechanism moves the resection head relative to a distal end of the endoscope between a first position in which the distal end of the endoscope extends distally out of the endoscope channel and a second position in which the distal end of the endoscope is received within the endoscope channel. The actuating mechanism moving a portion of an outer wall of the resection head to open and close a resection chamber defined by the outer wall.
    Type: Application
    Filed: January 13, 2006
    Publication date: June 22, 2006
    Inventor: Ronald Adams
  • Publication number: 20050222492
    Abstract: A distal assembly of an endoscopic surgical device, and a related method, having a first arm and a second arm pivotal relative to the first arm. Each arm is configured to hold a part of a two-part fastener at a distal end of the arm. A closing mechanism is positioned proximate a proximal end of each of the first and second arms opposite the distal end of each of the first and second arms. The closing mechanism is configured to move in relation to the first and second arms so as to close over at least one of the first and second arms to cause the distal ends of the arms to come together. An actuation member is also attached to the closing mechanism actuable to cause the closing mechanism to move in relation to the first and second arms.
    Type: Application
    Filed: May 23, 2005
    Publication date: October 6, 2005
    Applicant: Boston Scientific Scimed, Inc.
    Inventor: Ronald Adams
  • Publication number: 20050181156
    Abstract: Oxygen-scavenging polymers and packaging for holding oxygen-sensitive products. A heat treatment process has been found to significantly increase the oxygen-scavenging performance of the polymer. The enhanced scavenging polymer can be effectively incorporated into various packaging, including transparent multilayer containers for beer and juice. In one embodiment, a multilayer package made from the scavenger provides an actual reduction in oxygen content of a contents of the package, over a long period of time (e.g., 24 weeks). The package can be stored unfilled for an extended period (without significant loss of scavenging capability) and will scavenge substantially immediately upon filling with a liquid product. The package may incorporate a relatively low weight percentage of the scavenger, thus providing enhanced scavenging in a cost-effective manner.
    Type: Application
    Filed: May 19, 2004
    Publication date: August 18, 2005
    Inventors: Steven Schmidt, Brian Lynch, Keith Barker, Ronald Adams, Amit Agrawal
  • Patent number: 6916332
    Abstract: A distal assembly of an endoscopic surgical device, and a related method, having a first arm and a second arm pivotal relative to the first arm. Each arm is configured to hold a part of a two-part fastener at a distal end of the arm. A closing mechanism is positioned proximate a proximal end of each of the first and second arms opposite the distal end of each of the first and second arms. The closing mechanism is configured to move in relation to the first and second arms so as to close over at least one of the first and second arms to cause the distal ends of the arms to come together. An actuation member is also attached to the closing mechanism actuable to cause the closing mechanism to move in relation to the first and second arms.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: July 12, 2005
    Assignee: SciMed Life Systems, Inc.
    Inventor: Ronald Adams
  • Publication number: 20050065398
    Abstract: A proximal housing for a full-thickness resection device (FTRD) is provided with a plurality of chambers through which fasteners are introduced into a portion of tissue to be resected. The proximal housing has a noncircular cutout opposite the plurality of chambers to receive a noncircular endoscope. The proximal housing also is provided with a resection cavity into which the tissue to be resected is to be received. In addition, shaft openings are provided through which mounting shafts may be inserted. A noncircular endoscope is also disclosed for insertion into the cut-out whereby the endoscope has passages to house the functions of remote viewing, illumination, insulation and irrigation.
    Type: Application
    Filed: October 8, 2004
    Publication date: March 24, 2005
    Inventor: Ronald Adams
  • Patent number: 6820791
    Abstract: A proximal housing for a full-thickness resection device (FTRD) is provided with a plurality of chambers through which fasteners are introduced into a portion of tissue to be resected. The proximal housing has a noncircular cut-out opposite the plurality of chambers to receive a noncircular endoscope. The proximal housing also is provided with a resection cavity into which the tissue to be resected is to be received. In addition, shaft openings are provided through which mounting shafts may be inserted. A noncircular endoscope is also disclosed for insertion into the cut-out whereby the endoscope has passages to house the functions of remote viewing, illumination, insufflation and irrigation.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: November 23, 2004
    Assignee: SciMed Life Systems, Inc.
    Inventor: Ronald Adams