Patents by Inventor Ronald M. Bass

Ronald M. Bass has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150276113
    Abstract: A pipe-in-pipe system, including: an outer pipe; an inner pipe disposed within the outer pipe; a mid line assembly configured to connect the outer pipe and the inner pipe to a current source; and an annulus region between an outer surface of the inner pipe and an inner surface of the outer pipe, wherein the annulus region includes a conductive or semiconductive electrical path configured to carry current between the inner pipe and the outer pipe.
    Type: Application
    Filed: March 16, 2015
    Publication date: October 1, 2015
    Inventors: Ronald M. Bass, Robert H. Rogers, Are Bruaset, Adam Jackson
  • Patent number: 8162059
    Abstract: A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300° C.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: April 24, 2012
    Assignee: Shell Oil Company
    Inventors: Scott Vinh Nguyen, Ronald M. Bass
  • Publication number: 20090194287
    Abstract: A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300° C.
    Type: Application
    Filed: October 13, 2008
    Publication date: August 6, 2009
    Inventors: Scott Vinh Nguyen, David John Liney, Mark Thomas Carroll, Ronald M. Bass
  • Patent number: 6714018
    Abstract: Methods for determining electrical and thermal properties of a heated pipeline are provided. During commissioning or at any time thereafter, a base curve of impedance versus temperature of the pipeline is determined, so that impedance measurements can thereafter be used to measure temperature of the pipeline. Continuous monitoring of impedance is provided to detect changes in conditions of the pipeline. Start-up procedures that decrease risk of damage to the annulus from arcing are disclosed.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: March 30, 2004
    Assignee: Shell Oil Company
    Inventor: Ronald M. Bass
  • Patent number: 6688900
    Abstract: An Electrical Insulating Joint (EIJ) for a pipe-in-pipe electrically heated pipeline is provided. A ceramic disk under compressive load and dielectrics in an annulus provide electrical isolation and mechanical strength. An insulative liner extends around the ceramic disk to provide electrical isolation when materials other than hydrocarbons pass through the EIJ. The insulative liner may be extended through a knee joint. Pressure ports may be used to monitor fluid leaks and a built-in transformer may be used to monitor electrical leakage current.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: February 10, 2004
    Assignee: Shell Oil Company
    Inventors: Ronald M. Bass, James R. Hale, Gerald R. Douglas
  • Patent number: 6686745
    Abstract: A method and apparatus for electrically testing a pipe-in-pipe pipeline during the construction, installation, commissioning, operation, or dismantling phases of an electrically heated pipe-in-pipe subsea pipeline. One embodiment is directed to a high voltage qualification test of the electrical integrity of a segment of a pipe-in-pipe pipeline. Another embodiment is directed to a method and an apparatus for performing a high voltage pulse test of the electrical integrity of a pipe-in-pipe pipeline. Yet another embodiment of the present invention is directed to a method and an apparatus for performing a low voltage pulse test of the electrical integrity of a pipe-in-pipe pipeline, which may be performed during the operation phase of an electrically heated pipe-in-pipe pipeline.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: February 3, 2004
    Assignee: Shell Oil Company
    Inventor: Ronald M. Bass
  • Publication number: 20030235471
    Abstract: An Electrical Insulating Joint (EIJ) for a pipe-in-pipe electrically heated pipeline is provided. A ceramic disk under compressive load and dielectrics in an annulus provide electrical isolation and mechanical strength. An insulative liner extends around the ceramic disk to provide electrical isolation when materials other than hydrocarbons pass through the EIJ. The insulative liner may be extended through a knee joint. Pressure ports may be used to monitor fluid leaks and a built-in transformer may be used to monitor electrical leakage current.
    Type: Application
    Filed: June 25, 2002
    Publication date: December 25, 2003
    Inventors: Ronald M. Bass, James R. Hale, Gerald R. Douglas
  • Publication number: 20030020499
    Abstract: Methods for determining electrical and thermal properties of a heated pipeline are provided. During commissioning or at any time thereafter, a base curve of impedance versus temperature of the pipeline is determined, so that impedance measurements can thereafter be used to measure temperature of the pipeline. Continuous monitoring of impedance is provided to detect changes in conditions of the pipeline. Start-up procedures that decrease risk of damage to the annulus from arcing are disclosed.
    Type: Application
    Filed: July 20, 2001
    Publication date: January 30, 2003
    Inventor: Ronald M. Bass
  • Publication number: 20030016028
    Abstract: A method and apparatus for electrically testing a pipe-in-pipe pipeline during the construction, installation, commissioning, operation, or dismantling phases of an electrically heated pipe-in-pipe subsea pipeline. One embodiment is directed to a high voltage qualification test of the electrical integrity of a segment of a pipe-in-pipe pipeline. Another embodiment is directed to a method and an apparatus for performing a high voltage pulse test of the electrical integrity of a pipe-in-pipe pipeline. Yet another embodiment of the present invention is directed to a method and an apparatus for performing a low voltage pulse test of the electrical integrity of a pipe-in-pipe pipeline, which may be performed during the operation phase of an electrically heated pipe-in-pipe pipeline.
    Type: Application
    Filed: July 20, 2001
    Publication date: January 23, 2003
    Inventor: Ronald M. Bass
  • Patent number: 6509557
    Abstract: Apparatus and method are provided for electrically heating subsea pipelines. An electrically insulating layer is placed over the pipe in the segment of the pipeline to be heated and electrical current is caused to flow axially through the steel wall of the pipe. In one embodiment (end fed), an insulating joint at the host end of the pipeline is used to apply voltage to the end of the segment. At the remote end an electrical connector is used to conduct the electrical current to a return cable or to a seawater electrode. A buffer zone of the pipeline beyond the remote end is provided. Separate electrical heating may also be applied in the buffer zone. Electrical chokes may be used in different arrangements to decrease leakage current in the pipeline outside the heated segment. In another embodiment (center fed), voltage is applied at or near the midpoint of the segment to be heated through an electrical connector and no insulating joint is used.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: January 21, 2003
    Assignee: Shell Oil Company
    Inventor: Ronald M. Bass
  • Patent number: 6371693
    Abstract: Apparatus and method are provided for connecting electrical power for heating subsea pipelines after the pipeline is deployed. Electrical connections may be made subsea using wet-mateable connectors. The electrical power may be supplied from a boat or may be supplied from a host structure. A Remotely Operated Vehicle may be used to make the subsea electrical connections. Single Heated Insulated Pipes, Pipe-in-Pipe, heat tracing and other configurations for heating may be employed. The deployment of cables and other equipment for heating may be delayed until a need or potential need for heating or the probable locations of impediments to flow are identified in the subsea pipeline.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: April 16, 2002
    Assignee: Shell Oil Company
    Inventors: Frans F. Kopp, Ronald M. Bass
  • Patent number: 6292627
    Abstract: Apparatus and method for electrically heating a segment of a subsea pipeline are provided. Electrical power may be supplied about midpoint between the ends of concentric pipes. The annulus between the pipes electrically isolates the pipes, but at the ends of the segment the concentric pipes are electrically connected. The pipes may be electrically connected by bulkheads or by an insulating joint. A toroidal transformer may be placed in the annulus for extracting power at a selected location along the pipeline. An insulating joint allows power to be extracted from the ends of the heated segment. Extracted power may be used for pumps, other devices or for heating jumpers or other short segments of the pipeline. Contiguous segments of a pipeline may be heated, each segment having an electrical connection to the inner and the outer pipe intermediate the ends of the segment. A riser or segment of a riser having a pipe-in-pipe configuration may also be heated.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: September 18, 2001
    Assignee: Shell Oil Company
    Inventors: Robert T. Gilchrist, Jr., Ronald M. Bass
  • Patent number: 6278096
    Abstract: A method of repairing the insulation of a subsea insulated pipeline which includes the use of an induction heating coil placed around the insulated pipe in the vicinity of an insulation defect. An electric current is provided to the induction heating coil which heats the pipe and melts the surrounding thermoplastic insulation, and thereby repairs and seals the insulation defect.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: August 21, 2001
    Assignee: Shell Oil Company
    Inventor: Ronald M. Bass
  • Patent number: 6278095
    Abstract: An subsea pipeline system having jumpers (short segments connecting equipment or wells and the main segments) that can be electrically heated is provided. The jumpers are heated by induction coils placed around the jumpers, either before placing the jumpers subsea or afterward. Electrical power may be supplied to the induction coils from current flow in the walls of the heated segment of pipeline or from an external source such as from a subsea transformer or ROV.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: August 21, 2001
    Assignee: Shell Oil Company
    Inventors: Ronald M. Bass, Frans F. Kopp
  • Patent number: 5394738
    Abstract: A lightweight absorbent foam is produced using a high internal phase emulsion (HIPE), the production of which incorporates the use of capillary viscosity measurements as an in-line diagnostic for HIPE quality. The in-line diagnostics yield measurements of viscosity slope and amplitude. These measurements offer several advantages for monitoring emulsion quality, including stable high resolution measurement of hardware-independent parameters of the whole flow, without the need for sampling.
    Type: Grant
    Filed: January 24, 1994
    Date of Patent: March 7, 1995
    Assignee: Shell Oil Company
    Inventors: Ronald M. Bass, Thomas F. Brownscombe
  • Patent number: 5358974
    Abstract: In a process for the preparation of a low density porous crosslinked polymeric material by polymerizing a water-in-oil high internal phase emulsion, curing time of the monomers in the emulsion can be reduced without adversely affecting polymer properties by first advancing one or more of the monomers. All or a portion of the monomers are advanced in the presence of an advancement initiator or a free-radical-producing radiation source for about 5% to about 95% of the time effective to form a solid. Then, a water-in-oil high internal phase emulsion is formed with the advanced monomers and optionally additional monomers or the advanced monomers are added to a water-in-oil high internal phase emulsion containing other monomers. The emulsions containing the advanced monomers are cured. The process provides an improved method to incorporate volatile monomers in the porous polymeric material.
    Type: Grant
    Filed: November 29, 1993
    Date of Patent: October 25, 1994
    Assignee: Shell Oil Company
    Inventors: Thomas F. Brownscombe, Ronald M. Bass, Larry S. Corley
  • Patent number: 5306734
    Abstract: A lightweight absorbent foam is produced using a high internal phase emulsion (HIPE), the production of which incorporates the use of capillary viscosity measurements as an in-line diagnostic for HIPE quality. The in-line diagnostics yield measurements of viscosity slope and amplitude. These measurements offer several advantages for monitoring emulsion quality, including stable high resolution measurement of hardware-independent parameters of the whole flow, without the need for sampling.
    Type: Grant
    Filed: September 8, 1993
    Date of Patent: April 26, 1994
    Assignee: Shell Oil Company
    Inventors: Ronald M. Bass, Thomas F. Brownscombe
  • Patent number: 5290820
    Abstract: In a process for the preparation of a low density porous crosslinked polymeric material by polymerizing a water-in-oil high internal phase emulsion, curing time of the monomers in the emulsion can be reduced without adversely affecting polymer properties by first advancing one or more of the monomers. All or a portion of the monomers are advanced in the presence of an advancement initiator or a free-radical-producing radiation source for about 5% to about 95% of the time effective to form a solid. Then, a water-in-oil high internal phase emulsion is formed with the advanced monomers and optionally additional monomers or the advanced monomers are added to a water-in-oil high internal phase emulsion containing other monomers. The emulsions containing the advanced monomers are cured. The process provides an improved method to incorporate volatile monomers in the porous polymeric material.
    Type: Grant
    Filed: July 29, 1993
    Date of Patent: March 1, 1994
    Assignee: Shell Oil Company
    Inventors: Thomas F. Brownscombe, Ronald M. Bass, Larry S. Corley
  • Patent number: 5252619
    Abstract: In a process for the preparation of a low density porous crosslinked polymeric material by polymerizing a water-in-oil high internal phase emulsion, curing time of the monomers in the emulsion can be reduced without adversely affecting polymer properties or substantially affecting the emulsion by carrying out the curing in multiple-stages. The emulsion is first pre-cured at a temperature less than about 65.degree. C. until the emulsion reaches a Rheometrics dynamic shear modulus of at least about 500 and subsequently curing at a temperature above about 70.degree. C.
    Type: Grant
    Filed: February 16, 1993
    Date of Patent: October 12, 1993
    Assignee: Shell Oil Company
    Inventors: Thomas F. Brownscombe, Ronald M. Bass
  • Patent number: 5210104
    Abstract: A process for the production of a stable curable water-in-oil high internal phase emulsion containing monomers as the continuous phase is provided by adding an initiator subsequent to formation of a water-in-oil high internal phase emulsion. The process forms uniform stable water-in-oil high internal phase emulsions in a continuous mixing process. These curable water-in-oil high internal phase emulsions are useful for the preparation of low density porous crosslinked polymeric materials.
    Type: Grant
    Filed: October 15, 1992
    Date of Patent: May 11, 1993
    Assignee: Shell Oil Company
    Inventors: Ronald M. Bass, Thomas F. Brownscombe