Patents by Inventor Rony Abovitz

Rony Abovitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10767986
    Abstract: A waveguide apparatus includes a planar waveguide and at least one optical diffraction element (DOE) that provides a plurality of optical paths between an exterior and interior of the planar waveguide. A phase profile of the DOE may combine a linear diffraction grating with a circular lens, to shape a wave front and produce beams with desired focus. Waveguide apparati may be assembled to create multiple focal planes. The DOE may have a low diffraction efficiency, and planar waveguides may be transparent when viewed normally, allowing passage of light from an ambient environment (e.g., real world) useful in AR systems. Light may be returned for temporally sequentially passes through the planar waveguide. The DOE(s) may be fixed or may have dynamically adjustable characteristics. An optical coupler system may couple images to the waveguide apparatus from a projector, for instance a biaxially scanning cantilevered optical fiber tip.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: September 8, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Matthew D. Watson
  • Patent number: 10722318
    Abstract: A device for providing a colorfield for guiding a surgical tool within a surgical volume is provided. The device may include a coupling mechanism configured to couple the device to a surgical tool, and a light source configured to selectively emit light having a first predetermined color upon at least one of a surgical volume and the surgical tool. The first predetermined color may be selected based, at least in part, on a current spatial position of a portion of the surgical tool relative to a first pre-defined zone within the surgical volume.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: July 28, 2020
    Assignee: MAKO Surgical Corp.
    Inventors: Rony Abovitz, Hyosig Kang
  • Publication number: 20200225739
    Abstract: Various methods and apparatus are described herein for enabling one or more users to interface with virtual or augmented reality environments. An example system includes a computing network having computer servers interconnected through high bandwidth interfaces to gateways for processing data and/or for enabling communication of data between the servers and one or more local user interface devices. The servers include memory, processing circuitry, and software for designing and/or controlling virtual worlds, as well as for storing and processing user data and data provided by other components of the system. One or more virtual worlds may be presented to a user through a user device for the user to experience and interact. A large number of users may each use a device to simultaneously interface with one or more digital worlds by using the device to observe and interact with each other and with objects produced within the digital worlds.
    Type: Application
    Filed: March 26, 2020
    Publication date: July 16, 2020
    Applicant: Magic Leap, Inc.
    Inventor: Rony Abovitz
  • Publication number: 20200211291
    Abstract: One embodiment is directed to a system for enabling two or more users to interact within a virtual world comprising virtual world data, comprising a computer network comprising one or more computing devices, the one or more computing devices comprising memory, processing circuitry, and software stored at least in part in the memory and executable by the processing circuitry to process at least a portion of the virtual world data; wherein at least a first portion of the virtual world data originates from a first user virtual world local to a first user, and wherein the computer network is operable to transmit the first portion to a user device for presentation to a second user, such that the second user may experience the first portion from the location of the second user, such that aspects of the first user virtual world are effectively passed to the second user.
    Type: Application
    Filed: March 9, 2020
    Publication date: July 2, 2020
    Applicant: Magic Leap, Inc.
    Inventors: Samuel A. Miller, Rony Abovitz
  • Patent number: 10698215
    Abstract: Methods and systems are disclosed for presenting virtual objects on a limited number of depth planes using, e.g., an augmented reality display system. A farthest one of the depth planes is within a mismatch tolerance of optical infinity. The display system may switch the depth plane on which content is actively displayed, so that the content is displayed on the depth plane on which a user is fixating. The impact of errors in fixation tracking is addressed using partially overlapping depth planes. A fixation depth at which a user is fixating is determined and the display system determines whether to adjust selection of a selected depth plane at which a virtual object is presented. The determination may be based on whether the fixation depth falls within a depth overlap region of adjacent depth planes. The display system may switch the active depth plane depending upon whether the fixation depth falls outside the overlap region.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: June 30, 2020
    Assignee: Magic Leap, Inc.
    Inventors: William Hudson Welch, Paul M. Greco, Rony Abovitz, Yonatan Munk, Samuel A. Miller
  • Publication number: 20200183171
    Abstract: A display system can include a head-mounted display configured to project light to an eye of a user to display augmented reality image content to the user. The display system can include one or more user sensors configured to sense the user and can include one or more environmental sensors configured to sense surroundings of the user. The display system can also include processing electronics in communication with the display, the one or more user sensors, and the one or more environmental sensors. The processing electronics can be configured to sense a situation involving user focus, determine user intent for the situation, and alter user perception of a real or virtual object within the vision field of the user based at least in part on the user intent and/or sensed situation involving user focus. The processing electronics can be configured to at least one of enhance or de-emphasize the user perception of the real or virtual object within the vision field of the user.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 11, 2020
    Inventors: Nastasja U. Robaina, Nicole Elizabeth Samec, Christopher M. Harrises, Rony Abovitz, Mark Baerenrodt, Brian Lloyd Schmidt
  • Patent number: 10671152
    Abstract: Various methods and apparatus are described herein for enabling one or more users to interface with virtual or augmented reality environments. An example system includes a computing network having computer servers interconnected through high bandwidth interfaces to gateways for processing data and/or for enabling communication of data between the servers and one or more local user interface devices. The servers include memory, processing circuitry, and software for designing and/or controlling virtual worlds, as well as for storing and processing user data and data provided by other components of the system. One or more virtual worlds may be presented to a user through a user device for the user to experience and interact. A large number of users may each use a device to simultaneously interface with one or more digital worlds by using the device to observe and interact with each other and with objects produced within the digital worlds.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: June 2, 2020
    Assignee: Magic Leap, Inc.
    Inventor: Rony Abovitz
  • Patent number: 10641603
    Abstract: A waveguide apparatus includes a planar waveguide and at least one optical diffraction element (DOE) that provides a plurality of optical paths between an exterior and interior of the planar waveguide. A phase profile of the DOE may combine a linear diffraction grating with a circular lens, to shape a wave front and produce beams with desired focus. Waveguide apparati may be assembled to create multiple focal planes. The DOE may have a low diffraction efficiency, and planar waveguides may be transparent when viewed normally, allowing passage of light from an ambient environment (e.g., real world) useful in AR systems. Light may be returned for temporally sequentially passes through the planar waveguide. The DOE(s) may be fixed or may have dynamically adjustable characteristics. An optical coupler system may couple images to the waveguide apparatus from a projector, for instance a biaxially scanning cantilevered optical fiber tip.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: May 5, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Matthew D. Watson
  • Patent number: 10629003
    Abstract: One embodiment is directed to a system for enabling two or more users to interact within a virtual world comprising virtual world data, comprising a computer network comprising one or more computing devices, the one or more computing devices comprising memory, processing circuitry, and software stored at least in part in the memory and executable by the processing circuitry to process at least a portion of the virtual world data; wherein at least a first portion of the virtual world data originates from a first user virtual world local to a first user, and wherein the computer network is operable to transmit the first portion to a user device for presentation to a second user, such that the second user may experience the first portion from the location of the second user, such that aspects of the first user virtual world are effectively passed to the second user.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: April 21, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Samuel A. Miller, Rony Abovitz
  • Patent number: 10591286
    Abstract: A waveguide apparatus includes a planar waveguide and at least one optical diffraction element (DOE) that provides a plurality of optical paths between an exterior and interior of the planar waveguide. A phase profile of the DOE may combine a linear diffraction grating with a circular lens, to shape a wave front and produce beams with desired focus. Waveguide apparati may be assembled to create multiple focal planes. The DOE may have a low diffraction efficiency, and planar waveguides may be transparent when viewed normally, allowing passage of light from an ambient environment (e.g., real world) useful in AR systems. Light may be returned for temporally sequentially passes through the planar waveguide. The DOE(s) may be fixed or may have dynamically adjustable characteristics. An optical coupler system may couple images to the waveguide apparatus from a projector, for instance a biaxially scanning cantilevered optical fiber tip.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: March 17, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Mathew D. Watson
  • Publication number: 20200081555
    Abstract: Systems and methods for interacting with virtual objects in a three-dimensional space using a wearable system are disclosed. The wearable system can be programmed to permit user interaction with interactable objects in a field of regard (FOR) of a user. The FOR includes a portion of the environment around the user that is capable of being perceived by the user via the AR system. The system can determine a group of interactable objects in the FOR of the user and determine a pose of the user. The system can update, based on a change in the pose or a field of view (FOV) of the user, a subgroup of the interactable objects that are located in the FOV of the user and receive a selection of a target interactable object from the subgroup of interactable objects. The system can initiate a selection event on the target interactable object.
    Type: Application
    Filed: November 13, 2019
    Publication date: March 12, 2020
    Inventors: James M. Powderly, Savannah Niles, Frank Hamilton, Marshal A. Fontaine, Rony Abovitz, Alysha Naples
  • Publication number: 20200081256
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: August 12, 2019
    Publication date: March 12, 2020
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 10571263
    Abstract: A method for generating virtual content for presentation in an AR system includes, under control of a hardware processor included in the AR system, analyzing pose data to identify a pose of a user of the AR system. The method also includes identifying a physical object in a 3D physical environment of the user based at least partly on the pose. The method further includes responsive to detecting a first gesture, presenting a first type of virtual content in a display of the AR system. Moreover, the method includes responsive to detecting a second gesture, presenting a pod user interface virtual construct comprising a navigable menu. In addition, the method includes responsive to detecting a selection of an application through the navigable menu, rendering, in the display of the AR system, within the pod user interface virtual construct, the particular application in a 3D view to the user.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: February 25, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Mathew D. Watson
  • Patent number: 10564423
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: February 18, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Publication number: 20200041797
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: August 12, 2019
    Publication date: February 6, 2020
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Publication number: 20200041796
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: August 12, 2019
    Publication date: February 6, 2020
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 10545341
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: January 28, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 10539795
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: January 21, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 10539794
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: January 21, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 10533850
    Abstract: A method of rendering virtual content comprises capturing an image of a field of view of a user, extracting a set of map points based on the captured image, recognizing an object based on the extracted set of map points, retrieving semantic data associated with the recognized object and attaching the semantic data to object data associated with the recognized object, and inserting the recognized object data and the semantic data attached thereto into a virtual world model such that virtual content, when rendered at a user device of the user, is displayed in relation to the recognized object.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: January 14, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Mathew D. Watson