Patents by Inventor Ru-Liang Lee
Ru-Liang Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11532642Abstract: The present disclosure relates an integrated chip. The integrated chip includes a polysilicon layer arranged on an upper surface of a base substrate. A dielectric layer is arranged over the polysilicon layer, and an active semiconductor layer is arranged over the dielectric layer. A semiconductor material is arranged vertically on the upper surface of the base substrate and laterally beside the active semiconductor layer.Type: GrantFiled: March 2, 2021Date of Patent: December 20, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Eugene I-Chun Chen, Kuan-Liang Liu, Szu-Yu Wang, Chia-Shiung Tsai, Ru-Liang Lee, Chih-Ping Chao, Alexander Kalnitsky
-
Publication number: 20220352211Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a polysilicon layer arranged on an upper surface of a base substrate. A dielectric layer is arranged over the polysilicon layer, and an active semiconductor layer is arranged over the dielectric layer. A semiconductor material is arranged vertically on the upper surface of the base substrate and laterally beside the active semiconductor layer.Type: ApplicationFiled: July 21, 2022Publication date: November 3, 2022Inventors: Eugene I-Chun Chen, Kuan-Liang Liu, Szu-Yu Wang, Chia-Shiung Tsai, Ru-Liang Lee, Chih-Ping Chao, Alexander Kalnitsky
-
Publication number: 20220328419Abstract: Various embodiments of the present disclosure are directed towards a semiconductor processing system including an overlay (OVL) shift measurement device. The OVL shift measurement device is configured to determine an OVL shift between a first wafer and a second wafer, where the second wafer overlies the first wafer. A photolithography device is configured to perform one or more photolithography processes on the second wafer. A controller is configured to perform an alignment process on the photolithography device according to the determined OVL shift. The photolithography device performs the one or more photolithography processes based on the OVL shift.Type: ApplicationFiled: June 7, 2022Publication date: October 13, 2022Inventors: Yeong-Jyh Lin, Ching I. Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu
-
Publication number: 20220328538Abstract: Photodetectors, transistors, and metal interconnect structures may be formed on a front side of the semiconductor substrate. A trench is formed through a backside surface of the semiconductor substrate toward the front side by an anisotropic etch process, which provides a vertical or tapered surface with a first root-mean-square surface roughness greater than 0.5 nm. A single crystalline semiconductor liner is deposited by performing an epitaxial growth process at a growth temperature less than 500 degrees Celsius on the vertical or tapered surface of the trench. A physically exposed side surface of the single crystalline semiconductor liner may have a second root-mean-square surface roughness less than 0.5 nm. At least one dielectric metal oxide liner having a uniform thickness may be formed on the physically exposed side surface to provide a uniform negatively charged film, which may be advantageously used to reduce dark current and white pixels.Type: ApplicationFiled: June 29, 2022Publication date: October 13, 2022Inventors: Ru-Liang LEE, Yu-Hung CHENG, Yeur-Luen TU
-
Publication number: 20220285480Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a dielectric stack disposed over a substrate. The dielectric stack has a first plurality of layers interleaved between a second plurality of layers. The dielectric stack has one or more surfaces that define a plurality of indentations recessed into a side of the dielectric stack at different vertical heights corresponding to the second plurality of layers. A capacitor structure lines the one or more surfaces of the dielectric stack. The capacitor structure includes conductive electrodes separated by a capacitor dielectric.Type: ApplicationFiled: June 29, 2021Publication date: September 8, 2022Inventors: Alexander Kalnitsky, Ru-Liang Lee, Ming Chyi Liu, Sheng-Chan Li, Sheng-Chau Chen
-
Patent number: 11404465Abstract: Photodetectors, transistors, and metal interconnect structures may be formed on a front side of the semiconductor substrate. A trench is formed through a backside surface of the semiconductor substrate toward the front side by an anisotropic etch process, which provides a vertical or tapered surface with a first root-mean-square surface roughness greater than 0.5 nm. A single crystalline semiconductor liner is deposited by performing an epitaxial growth process at a growth temperature less than 500 degrees Celsius on the vertical or tapered surface of the trench. A physically exposed side surface of the single crystalline semiconductor liner may have a second root-mean-square surface roughness less than 0.5 nm. At least one dielectric metal oxide liner having a uniform thickness may be formed on the physically exposed side surface to provide a uniform negatively charged film, which may be advantageously used to reduce dark current and white pixels.Type: GrantFiled: June 15, 2020Date of Patent: August 2, 2022Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Ru-Liang Lee, Yu-Hung Cheng, Yeur-Luen Tu
-
Patent number: 11374000Abstract: Various embodiments of the present application are directed towards a semiconductor device comprising a trench capacitor, the trench capacitor comprising a plurality of lateral protrusions. In some embodiments, the trench capacitor comprises a dielectric structure over a substrate. The dielectric structure may comprise a plurality of dielectric layers overlying the substrate. The dielectric structure may comprise a plurality of lateral recesses. In some embodiments, the plurality of lateral protrusions extend toward and fill the plurality of lateral recesses. By forming the trench capacitor with the plurality of lateral protrusions filling the plurality of lateral recesses, the surface area of the capacitor is increased without increasing the depth of the trench. As a result, greater capacitance values may be achieved without necessarily increasing the depth of the trench and thus, without necessarily increasing the size of the semiconductor device.Type: GrantFiled: March 10, 2020Date of Patent: June 28, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ru-Liang Lee, Ming Chyi Liu, Shih-Chang Liu
-
Publication number: 20220189997Abstract: The present disclosure relates an integrated chip. The integrated chip includes a polysilicon layer arranged on an upper surface of a base substrate. A dielectric layer is arranged over the polysilicon layer, and an active semiconductor layer is arranged over the dielectric layer. A semiconductor material is arranged vertically on the upper surface of the base substrate and laterally beside the active semiconductor layer.Type: ApplicationFiled: March 2, 2021Publication date: June 16, 2022Inventors: Eugene I-Chun Chen, Kuan-Liang Liu, Szu-Yu Wang, Chia-Shiung Tsai, Ru-Liang Lee, Chih-Ping Chao, Alexander Kalnitsky
-
Patent number: 11362038Abstract: Various embodiments of the present disclosure are directed towards a method for forming a semiconductor structure. The method includes forming a plurality of upper alignment marks on a semiconductor wafer. A plurality of lower alignment marks is formed on a handle wafer and correspond to the upper alignment marks. The semiconductor wafer is bonded to the handle wafer such that centers of the upper alignment marks are laterally offset from centers of corresponding lower alignment marks. An overlay (OVL) shift is measured between the handle wafer and the semiconductor wafer by detecting the plurality of upper alignment marks and the plurality of lower alignment marks. A photolithography process is performed by a photolithography tool to partially form an integrated circuit (IC) structure over the semiconductor wafer. During the photolithography process the photolithography tool is compensatively aligned according to the OVL shift.Type: GrantFiled: October 5, 2020Date of Patent: June 14, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yeong-Jyh Lin, Ching I Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu
-
Patent number: 11329148Abstract: A semiconductor device includes a substrate. The semiconductor device includes an AlN seed layer in direct contact with the substrate. The AlN seed layer includes an AlN first seed sublayer, and an AlN second seed sublayer, wherein a portion of the AlN seed layer closest to the substrate includes carbon dopants and has a different lattice structure from a substrate lattice structure. The semiconductor device includes a graded layer in direct contact with the AlN seed layer. The graded layer includes a first graded sublayer including AlGaN, a second graded sublayer including AlGaN, and a third graded sublayer including AlGaN. The semiconductor device includes a channel layer over the graded layer. The semiconductor device includes an active layer over the channel layer, wherein the active layer has a band gap discontinuity with the channel layer.Type: GrantFiled: November 18, 2019Date of Patent: May 10, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chi-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai, Ru-Liang Lee
-
Publication number: 20220139769Abstract: Various embodiments of the present application are directed to a method for forming a semiconductor-on-insulator (SOI) device with an impurity competing layer to absorb potential contamination metal particles during an annealing process, and the SOI structure thereof. In some embodiments, an impurity competing layer is formed on the dummy substrate. An insulation layer is formed over a support substrate. A front side of the dummy wafer is bonded to the insulation layer. An annealing process is performed and the impurity competing layer absorbs metal from an upper portion of the dummy substrate. Then, a majority portion of the dummy substrate is removed including the impurity competing layer, leaving a device layer of the dummy substrate on the insulation layer.Type: ApplicationFiled: January 19, 2022Publication date: May 5, 2022Inventors: Yu-Hung Cheng, Pu-Fang Chen, Cheng-Ta Wu, Po-Jung Chiang, Ru-Liang Lee, Victor Y. Lu, Yen-Hsiu Chen, Yeur-Luen Tu, Yu-Lung Yeh, Shi-Chieh Lin
-
Publication number: 20220037199Abstract: Deep trench isolation structures for high voltage semiconductor-on-insulator devices are disclosed herein. An exemplary deep trench isolation structure surrounds an active region of a semiconductor-on-insulator substrate. The deep trench isolation structure includes a first insulator sidewall spacer, a second insulator sidewall spacer, and a multilayer silicon-comprising isolation structure disposed between the first insulator sidewall spacer and the second insulator sidewall spacer. The multilayer silicon-comprising isolation structure includes a top polysilicon portion disposed over a bottom silicon portion. The bottom polysilicon portion is formed by a selective deposition process, while the top polysilicon portion is formed by a non-selective deposition process. In some embodiments, the bottom silicon portion is doped with boron.Type: ApplicationFiled: April 16, 2021Publication date: February 3, 2022Inventors: Yu-Hung Cheng, Yu-Chun Chang, Ching I Li, Ru-Liang Lee
-
Publication number: 20220028994Abstract: A method of forming a semiconductor device includes: forming an etch stop layer over a substrate; forming a first diffusion barrier layer over the etch stop layer; forming a semiconductor device layer over the first diffusion barrier layer, the semiconductor device layer including a transistor; forming a first interconnect structure over the semiconductor device layer at a front side of the semiconductor device layer, the first interconnect structure electrically coupled to the transistor; attaching the first interconnect structure to a carrier; removing the substrate, the etch stop layer, and the first diffusion barrier layer after the attaching; and forming a second interconnect structure at a backside of the semiconductor device layer after the removing.Type: ApplicationFiled: December 30, 2020Publication date: January 27, 2022Inventors: Eugene I-Chun Chen, Ru-Liang Lee, Chia-Shiung Tsai, Chen-Hao Chiang
-
Patent number: 11232974Abstract: Various embodiments of the present application are directed to a method for forming a semiconductor-on-insulator (SOI) device with an impurity competing layer to absorb potential contamination metal particles during an annealing process, and the SOI structure thereof. In some embodiments, an impurity competing layer is formed on the dummy substrate. An insulation layer is formed over a support substrate. A front side of the dummy wafer is bonded to the insulation layer. An annealing process is performed and the impurity competing layer absorbs metal from an upper portion of the dummy substrate. Then, a majority portion of the dummy substrate is removed including the impurity competing layer, leaving a device layer of the dummy substrate on the insulation layer.Type: GrantFiled: August 21, 2019Date of Patent: January 25, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yu-Hung Cheng, Pu-Fang Chen, Cheng-Ta Wu, Po-Jung Chiang, Ru-Liang Lee, Victor Y. Lu, Yen-Hsiu Chen, Yeur-Luen Tu, Yu-Lung Yeh, Shi-Chieh Lin
-
Publication number: 20210391362Abstract: Photodetectors, transistors, and metal interconnect structures may be formed on a front side of the semiconductor substrate. A trench is formed through a backside surface of the semiconductor substrate toward the front side by an anisotropic etch process, which provides a vertical or tapered surface with a first root-mean-square surface roughness greater than 0.5 nm. A single crystalline semiconductor liner is deposited by performing an epitaxial growth process at a growth temperature less than 500 degrees Celsius on the vertical or tapered surface of the trench. A physically exposed side surface of the single crystalline semiconductor liner may have a second root-mean-square surface roughness less than 0.5 nm. At least one dielectric metal oxide liner having a uniform thickness may be formed on the physically exposed side surface to provide a uniform negatively charged film, which may be advantageously used to reduce dark current and white pixels.Type: ApplicationFiled: June 15, 2020Publication date: December 16, 2021Inventors: Ru-Liang LEE, Yu-Hung CHENG, Yeur-Luen TU
-
Publication number: 20210375781Abstract: Various embodiments of the present disclosure are directed towards a method for forming a semiconductor structure. The method includes forming a plurality of upper alignment marks on a semiconductor wafer. A plurality of lower alignment marks is formed on a handle wafer and correspond to the upper alignment marks. The semiconductor wafer is bonded to the handle wafer such that centers of the upper alignment marks are laterally offset from centers of corresponding lower alignment marks. An overlay (OVL) shift is measured between the handle wafer and the semiconductor wafer by detecting the plurality of upper alignment marks and the plurality of lower alignment marks. A photolithography process is performed by a photolithography tool to partially form an integrated circuit (IC) structure over the semiconductor wafer. During the photolithography process the photolithography tool is compensatively aligned according to the OVL shift.Type: ApplicationFiled: October 5, 2020Publication date: December 2, 2021Inventors: Yeong-Jyh Lin, Ching I Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu
-
Patent number: 11167982Abstract: A semiconductor arrangement and methods of formation are provided. The semiconductor arrangement includes a micro-electro mechanical system (MEMS). A via opening is formed through a substrate, first dielectric layer and a first plug of the MEMS. The first plug comprises a first material, where the first material has an etch selectivity different than an etch selectivity of the first dielectric layer. The different etch selectivity of first plug allows the via opening to be formed relatively quickly and with a relatively high aspect ratio and desired a profile, as compared to forming the via opening without using the first plug.Type: GrantFiled: June 15, 2020Date of Patent: November 9, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITEDInventors: Chung-Yen Chou, Lee-Chuan Tseng, Chia-Shiung Tsai, Ru-Liang Lee
-
Patent number: 11145806Abstract: A device includes a plurality of bottom electrode features, a plurality of Magnetic Tunnel Junction (MTJ) stacks formed on top surfaces of the bottom electrode features, top electrode features formed on top of the MTJ stacks, and an etch stop layer extending along side surfaces of the bottom electrode feature and partially along side surfaces of the MTJ stacks.Type: GrantFiled: June 1, 2020Date of Patent: October 12, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Carlos H. Diaz, Harry-Hak-Lay Chuang, Ru-Liang Lee
-
Publication number: 20210288047Abstract: Various embodiments of the present application are directed towards a semiconductor device comprising a trench capacitor, the trench capacitor comprising a plurality of lateral protrusions. In some embodiments, the trench capacitor comprises a dielectric structure over a substrate. The dielectric structure may comprise a plurality of dielectric layers overlying the substrate. The dielectric structure may comprise a plurality of lateral recesses. In some embodiments, the plurality of lateral protrusions extend toward and fill the plurality of lateral recesses. By forming the trench capacitor with the plurality of lateral protrusions filling the plurality of lateral recesses, the surface area of the capacitor is increased without increasing the depth of the trench. As a result, greater capacitance values may be achieved without necessarily increasing the depth of the trench and thus, without necessarily increasing the size of the semiconductor device.Type: ApplicationFiled: March 10, 2020Publication date: September 16, 2021Inventors: Ru-Liang Lee, Ming Chyi Liu, Shih-Chang Liu
-
Patent number: 10991758Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a bottom electrode via (BEVA) in a dielectric layer, a recap layer on the BEVA, a bottom electrode on the recap layer, and a magnetic tunneling junction (MTJ) layer over the recap layer and vertically aligning with the BEVA. The BEVA includes a lining layer over a bottom and a sidewall of a trench of the BEVA and a copper layer over the lining layer, filling the trench of the BEVA. The copper layer has a dimpled structure with a top surface lower than a top surface of the dielectric layer. The recap layer overlaps a top surface of the lining layer, an entire top surface of the copper layer, and a portion of the dielectric stack adjacent to the lining layer.Type: GrantFiled: May 21, 2019Date of Patent: April 27, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Harry-Hak-Lay Chuang, Kuei-Hung Shen, Hsun-Chung Kuang, Cheng-Yuan Tsai, Ru-Liang Lee