Patents by Inventor Ru-Liang Lee

Ru-Liang Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10672975
    Abstract: A device includes a metal layer comprising a plurality of bottom electrode features. The device further includes a Magnetic Tunnel Junction (MTJ) stack layer comprising a plurality of MTJ stack features, each of the MTJ stack features disposed on a top surface of one of the plurality of bottom electrode features. The device further includes sidewall structures that extend along side surfaces of both the bottom electrode features and the MTJ stack features.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: June 2, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Carlos H. Diaz, Harry-Hak-Lay Chuang, Ru-Liang Lee
  • Publication number: 20200119026
    Abstract: A method includes forming first and second gate stacks over a substrate. Each of the first and second gate stacks includes a tunneling dielectric layer, a floating gate over the tunneling dielectric layer, a middle dielectric layer over the floating gate, and a control gate over the middle dielectric layer. A conductive layer is formed over the first and second gate stacks. The conductive layer is etched to form a erase gate between the first and second gate stacks. Etching the conductive layer is performed such that a top surface of the erase gate is not higher than a top surface of the control gate and such that the top surface of the erase gate is at least partially curved inwards.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chang-Ming WU, Wei-Cheng WU, Yuan-Tai TSENG, Shih-Chang LIU, Chia-Shiung TSAI, Ru-Liang LEE, Harry-Hak-Lay CHUANG
  • Publication number: 20200108592
    Abstract: The present disclosure relates to a debonding apparatus. In some embodiments, the debonding apparatus comprises a wafer chuck configured to hold a pair of bonded substrates on a chuck top surface. The debonding apparatus further comprises a pair of separating blades including a first separating blade and a second separating blade placed at edges of the pair of bonded substrates. The first separating blade has a first thickness that is smaller than a second thickness of the second separating blade. The debonding apparatus further comprises a flex wafer assembly configured to pull the pair of bonded substrates upwardly to separate a second substrate from a first substrate of the pair of bonded substrate. By providing unbalanced initial torques on opposite sides of the bonded substrate pair, edge defects and wafer breakage are reduced.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 9, 2020
    Inventors: Chang-Chen Tsao, Kuo Liang Lu, Ru-Liang Lee, Sheng-Hsiang Chuang, Yu-Hung Cheng, Yeur-Luen Tu, Cheng-Kang Hu
  • Publication number: 20200083362
    Abstract: A semiconductor device includes a substrate. The semiconductor device includes an AlN seed layer in direct contact with the substrate. The AlN seed layer includes an AlN first seed sublayer, and an AlN second seed sublayer, wherein a portion of the AlN seed layer closest to the substrate includes carbon dopants and has a different lattice structure from a substrate lattice structure. The semiconductor device includes a graded layer in direct contact with the AlN seed layer. The graded layer includes a first graded sublayer including AlGaN, a second graded sublayer including AlGaN, and a third graded sublayer including AlGaN. The semiconductor device includes a channel layer over the graded layer. The semiconductor device includes an active layer over the channel layer, wherein the active layer has a band gap discontinuity with the channel layer.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 12, 2020
    Inventors: Chi-Ming CHEN, Po-Chun LIU, Chung-Yi YU, Chia-Shiung TSAI, Ru-Liang LEE
  • Patent number: 10569520
    Abstract: The present disclosure relates to a debonding apparatus. In some embodiments, the debonding apparatus comprises a wafer chuck configured to hold a pair of bonded substrates on a chuck top surface. The debonding apparatus further comprises a pair of separating blades including a first separating blade and a second separating blade placed at edges of the pair of bonded substrates diametrically opposite to each other. The first separating blade has a first thickness that is smaller than a second thickness of the second separating blade. The debonding apparatus further comprises a flex wafer assembly placed above the pair of bonded substrates and configured to pull the pair of bonded substrates upwardly to separate a second substrate from a first substrate of the pair of bonded substrate. By providing unbalanced initial torques on opposite sides of the bonded substrate pair, edge defects and wafer breakage are reduced.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: February 25, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chang-Chen Tsao, Kuo Liang Lu, Ru-Liang Lee, Sheng-Hsiang Chuang, Yu-Hung Cheng, Yeur-Luen Tu, Cheng-Kang Hu
  • Publication number: 20200052082
    Abstract: An exemplary method includes forming a common source region in a substrate, and forming an isolation feature over the common source region. The common source region is disposed between the substrate and the isolation feature. The common source region and the isolation feature span a plurality of active regions of the substrate. A gate, such as an erase gate, may be formed after forming the common source region. In some implementations, the common source region is formed by etching the substrate to form a saw-tooth shaped recess region (or a U-shaped recess region) and performing an ion implantation process to form a doped region in a portion of the saw-tooth shaped recess region (or the U-shaped recess region), such that the common source region has a sawtooth profile (or a U-shaped profile).
    Type: Application
    Filed: October 18, 2019
    Publication date: February 13, 2020
    Inventors: Ming Chyi Liu, Chang-Ming Wu, Shih-Chang Liu, Wei Cheng Wu, Harry-Hak-Lay Chuang, Chia-Shiung Tsai, Ru-Liang Lee
  • Patent number: 10510763
    Abstract: A nonvolatile memory embedded in an advanced logic circuit and a method forming the same are provided. In the nonvolatile memory, the word lines and erase gates have top surfaces lower than the top surfaces of the control gate. In addition, the word lines and the erase gates are surrounded by dielectric material before a self-aligned silicidation process is performed. Therefore, no metal silicide can be formed on the word lines and the erase gate to produce problems of short circuit and current leakage in a later chemical mechanical polishing process.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: December 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chang-Ming Wu, Wei-Cheng Wu, Yuan-Tai Tseng, Shih-Chang Liu, Chia-Shiung Tsai, Ru-Liang Lee, Harry Hak-Lay Chuang
  • Publication number: 20190367358
    Abstract: A semiconductor arrangement and methods of formation are provided. The semiconductor arrangement includes a micro-electro mechanical system (MEMS). A via opening is formed through a substrate, first dielectric layer and a first plug of the MEMS. The first plug comprises a first material, where the first material has an etch selectivity different than an etch selectivity of the first dielectric layer. The different etch selectivity of first plug allows the via opening to be formed relatively quickly and with a relatively high aspect ratio and desired a profile, as compared to forming the via opening without using the first plug.
    Type: Application
    Filed: June 17, 2019
    Publication date: December 5, 2019
    Inventors: Chung-Yen CHOU, Lee-Chuan TSENG, Chia-Shiung TSAI, Ru-Liang LEE
  • Patent number: 10497560
    Abstract: Some embodiments of the present disclosure relate to a method for forming flash memory. In this method, a tunnel oxide is formed over a semiconductor substrate. A layer of silicon dot nucleates is formed on the tunnel oxide. The layer of silicon dots includes silicon dot nucleates having respective initial sizes which differ according to a first size distribution. An etching process is performed to reduce the initial sizes of the silicon dot nucleates so reduced-size silicon dot nucleates have respective reduced sizes which differ according to a second size distribution. The second size distribution has a smaller spread than the first size distribution.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: December 3, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Ming Chen, Tsu-Hui Su, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai, Ru-Liang Lee
  • Patent number: 10483386
    Abstract: A semiconductor device includes a substrate, and a seed layer over the substrate, wherein the seed layer comprises carbon dopants. The semiconductor device further includes a channel layer over the seed layer, and an active layer over the channel layer, wherein the active layer has a band gap discontinuity with the channel layer. A method of making a transistor includes forming a seed layer over a substrate, and doping the seed layer, wherein doping the seed layer comprises introducing carbon dopants into the seed layer. The method further includes forming a channel layer over the seed layer, and forming an active layer over the channel layer, wherein the active layer has a band gap discontinuity with the channel layer.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: November 19, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai, Ru-Liang Lee
  • Patent number: 10453932
    Abstract: An exemplary method includes forming a common source region in a substrate, and forming an isolation feature over the common source region. The common source region is disposed between the substrate and the isolation feature. The common source region and the isolation feature span a plurality of active regions of the substrate. A gate, such as an erase gate, may be formed after forming the common source region. In some implementations, the common source region is formed by etching the substrate to form a saw-tooth shaped recess region (or a U-shaped recess region) and performing an ion implantation process to form a doped region in a portion of the saw-tooth shaped recess region (or the U-shaped recess region), such that the common source region has a sawtooth profile (or a U-shaped profile).
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: October 22, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming Chyi Liu, Chang-Ming Wu, Shih-Chang Liu, Wei Cheng Wu, Harry-Hak-Lay Chuang, Chia-Shiung Tsai, Ru-Liang Lee
  • Publication number: 20190273118
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a bottom electrode via (BEVA) in a dielectric layer, a recap layer on the BEVA, a bottom electrode on the recap layer, and a magnetic tunneling junction (MTJ) layer over the recap layer and vertically aligning with the BEVA. The BEVA includes a lining layer over a bottom and a sidewall of a trench of the BEVA and a copper layer over the lining layer, filling the trench of the BEVA. The copper layer has a dimpled structure with a top surface lower than a top surface of the dielectric layer. The recap layer overlaps a top surface of the lining layer, an entire top surface of the copper layer, and a portion of the dielectric stack adjacent to the lining layer.
    Type: Application
    Filed: May 21, 2019
    Publication date: September 5, 2019
    Inventors: HARRY-HAK-LAY CHUANG, KUEI-HUNG SHEN, HSUN-CHUNG KUANG, CHENG-YUAN TSAI, RU-LIANG LEE
  • Patent number: 10322930
    Abstract: A semiconductor arrangement and methods of formation are provided. The semiconductor arrangement includes a micro-electro mechanical system (MEMS). A via opening is formed through a substrate, first dielectric layer and a first plug of the MEMS. The first plug comprises a first material, where the first material has an etch selectivity different than an etch selectivity of the first dielectric layer. The different etch selectivity of first plug allows the via opening to be formed relatively quickly and with a relatively high aspect ratio and desired a profile, as compared to forming the via opening without using the first plug.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: June 18, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Chung-Yen Chou, Lee-Chuan Tseng, Chia-Shiung Tsai, Ru-Liang Lee
  • Patent number: 10304903
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a bottom electrode via (BEVA), a recap layer on the BEVA, and a magnetic tunneling junction (MTJ) layer over the recap layer. The BEVA includes a lining layer over a bottom and a sidewall of a trench of the BEVA, and electroplated copper over the lining layer, filling the trench of the BEVA. The recap layer overlaps a top surface of the lining layer and a top surface of the electroplated copper.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: May 28, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Harry-Hak-Lay Chuang, Kuei-Hung Shen, Hsun-Chung Kuang, Cheng-Yuan Tsai, Ru-Liang Lee
  • Patent number: 10297604
    Abstract: Some embodiments of the present disclosure relate to method of forming a memory device. In some embodiments, the method may be performed by forming a floating gate over a first dielectric on a substrate. A control gate is formed over the floating gate and first and second spacers are formed along sidewalls of the control gate. The first and second spacers extend past outer edges of an upper surface of the floating gate. An etching process is performed on the first and second spacers to remove a portion of the first and second spacers that extends past the outer edges of the upper surface of the floating gate along an interface between the first and second spacers and the floating gate.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: May 21, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chang-Ming Wu, Shih-Chang Liu, Chia-Shiung Tsai, Ru-Liang Lee
  • Publication number: 20190118522
    Abstract: The present disclosure relates to a debonding apparatus. In some embodiments, the debonding apparatus comprises a wafer chuck configured to hold a pair of bonded substrates on a chuck top surface. The debonding apparatus further comprises a pair of separating blades including a first separating blade and a second separating blade placed at edges of the pair of bonded substrates diametrically opposite to each other. The first separating blade has a first thickness that is smaller than a second thickness of the second separating blade. The debonding apparatus further comprises a flex wafer assembly placed above the pair of bonded substrates and configured to pull the pair of bonded substrates upwardly to separate a second substrate from a first substrate of the pair of bonded substrate. By providing unbalanced initial torques on opposite sides of the bonded substrate pair, edge defects and wafer breakage are reduced.
    Type: Application
    Filed: December 14, 2018
    Publication date: April 25, 2019
    Inventors: Chang-Chen Tsao, Kuo Liang Lu, Ru-Liang Lee, Sheng-Hsiang Chuang, Yu-Hung Cheng, Yeur-Luen Tu, Cheng-Kang Hu
  • Patent number: 10170699
    Abstract: The present disclosure relates to a method of forming a resistive random access memory (RRAM) cell having a reduced leakage current, and an associated apparatus. In some embodiments, the method is performed by forming a bottom electrode layer over a lower metal interconnect layer. A dielectric data storage layer having a variable resistance is formed onto the bottom electrode layer in-situ with forming at least a part of the bottom electrode layer. A top electrode layer is formed over the dielectric data storage layer. By forming the dielectric data storage layer in-situ with forming at least a part of the bottom electrode layer, leakage current, leakage current distribution and device yield of the RRAM cell are improved.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: January 1, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Trinh Hai Dang, Hsing-Lien Lin, Kai-Wen Cheng, Cheng-Yuan Tsai, Chia-Shiung Tsai, Ru-Liang Lee
  • Patent number: 10155369
    Abstract: The present disclosure relates to a method for debonding a pair of bonded substrates. In the method, a debonding apparatus is provided comprising a wafer chuck, a flex wafer assembly, and a set of separating blades. The pair of bonded substrates is placed upon the wafer chuck so that a first substrate of the bonded substrate pair is in contact with a chuck top surface. The flex wafer assembly is placed above the bonded substrate pair so that its first surface is in contact with an upper surface of a second substrate of the bonded substrate pair. A pair of separating blades having different thicknesses is inserted between the first and second substrates from edges of the pair of bonded substrates diametrically opposite to each other while the second substrate is concurrently pulled upward until the flex wafer assembly flexes the second substrate from the first substrate. By providing unbalanced initial torques on opposite sides of the bonded substrate pair, edge defects and wafer breakage are reduced.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chang-Chen Tsao, Kuo Liang Lu, Ru-Liang Lee, Sheng-Hsiang Chuang, Yu-Hung Cheng, Yeur-Luen Tu, Cheng-Kang Hu
  • Patent number: 10138118
    Abstract: An integrated circuit (IC) device is provided. The IC device includes a first die including a first substrate and a second die including a second substrate. A plasma-reflecting layer is included on an upper surface of the first die. The plasma-reflecting layer is configured to reflect a plasma therefrom. The second substrate is bonded to the first die so as to form a cavity, wherein a lower surface of the cavity is lined by the plasma-reflecting layer. A dielectric protection layer is present on a lower surface of the second die and lines the upper surface of the cavity. A material of the second substrate has a first etch rate for the plasma and a material of the dielectric protection layer has a second etch rate for the plasma. The second etch rate is less than the first etch rate.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: November 27, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Yen Chou, Chih-Jen Chan, Chia-Shiung Tsai, Ru-Liang Lee, Yuan-Chih Hsieh
  • Patent number: 10134945
    Abstract: A method for wafer to wafer bonding for III-V and CMOS wafers is provided. A silicon carrier wafer is provided having an epitaxial III-V semiconductor region and an oxide region disposed over the wafer top surface, the regions having substantially equal heights. A sidewall of the epitaxial III-V semiconductor region directly contacts a sidewall of the oxide region. A eutectic bonding layer is formed over a top surface of the epitaxial III-V semiconductor region and the oxide region for bonding to the CMOS wafer which contains semiconductor devices. The silicon carrier wafer is removed, and the CMOS wafer is singulated to form a plurality of three-dimensional integrated circuits, each including a CMOS substrate corresponding to a portion of the CMOS wafer and a III-V optical device corresponding to a portion of the III-V epitaxial semiconductor region.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: November 20, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming Chyi Liu, Chen-Hua Yu, Chia-Shiung Tsai, Alexander Kalnitsky, Ru-Liang Lee, Eugene Chen