Patents by Inventor Ruben Caballero

Ruben Caballero has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160026329
    Abstract: This invention is directed to an electronic device with an embedded authentication system for restricting access to device resources. The authentication system may include one or more sensors operative to detect biometric information of a user. The sensors may be positioned in the device such that the sensors may detect appropriate biometric information as the user operates the device, without requiring the user to perform a step for providing the biometric information (e.g., embedding a fingerprint sensor in an input mechanism instead of providing a fingerprint sensor in a separate part of the device housing). In some embodiments, the authentication system may be operative to detect a visual or temporal pattern of inputs to authenticate a user. In response to authenticating, a user may access restricted files, applications (e.g., applications purchased by the user), or settings (e.g., application settings such as contacts or saved game profile).
    Type: Application
    Filed: October 1, 2015
    Publication date: January 28, 2016
    Inventors: Anthony M. FADELL, Andrew Bert HODGE, Stephan V. SCHELL, Ruben CABALLERO, Jesse Lee DOROGUSKAR, Stephen Paul ZADESKY, Emery SANFORD
  • Patent number: 9246221
    Abstract: Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. A parallel-fed loop antenna may be formed from portions of a conductive bezel and a ground plane. The antenna may operate in multiple communications bands. The bezel may surround a peripheral portion of a display that is mounted to the front of an electronic device. The bezel may contain a gap. Antenna feed terminals for the antenna may be located on opposing sides of the gap. A variable capacitor may bridge the gap. An inductive element may bridge the gap and the antenna feed terminals. A switchable inductor may be coupled in parallel with the inductive element. Tunable matching circuitry may be coupled between one of the antenna feed terminals and a conductor in a coaxial cable connecting the transceiver circuitry to the antenna.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: January 26, 2016
    Assignee: Apple Inc.
    Inventors: Nanbo Jin, Mattia Pascolini, Matt A. Mow, Robert W. Schlub, Ruben Caballero
  • Patent number: 9236648
    Abstract: Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include antenna resonating elements such as dual-band antenna resonating elements that resonate in first and second communications bands. The antenna structures may also contain parasitic antenna elements such as elements that are operative in only the first or second communications band and elements that are operative in both the first and second communications bands. The antenna resonating elements and parasitic elements may be mounted on a common dielectric carrier. The dielectric carrier may be mounted within a slot or other opening in a conductive element. The conductive element may be formed from conductive housing structures in an electronic device such as a portable computer. The portable computer may have a clutch barrel with a dielectric cover. The dielectric cover may overlap and cover the slot and the dielectric carrier.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: January 12, 2016
    Assignee: Apple Inc.
    Inventors: Jerzy Guterman, Hao Xu, Douglas Blake Kough, Eduardo Lopez Camacho, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Patent number: 9231686
    Abstract: Dynamic antenna switching based on weighted signal to noise ratio (SNR). A wireless device may include multiple antennas. SNR at each active antenna may be calculated. An antenna-specific weight may be applied to each antenna's SNR. The antenna-specific weights may further be radio specific and/or transmit or receive specific in some cases. Antenna selection (possibly just for a specific radio and/or for transmit or receive operations, depending on the specificity of the antenna weights), including potentially switching which antenna is used, may be based on the resulting weighted SNR values for each antenna. If the antenna-specific weights are radio specific and/or transmit or receive operation specific, the method may be performed multiple times with different antenna-specific weights to select antenna(s) for different radios and/or for other operations.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: January 5, 2016
    Assignee: Apple Inc.
    Inventors: Xiaojun Chen, Peter M Agboh, Indranil S Sen, Hsin-Yuo Liu, Vusthia Sunil Reddy, Diego C Hernandez, Digvijay A Jadhav, Mohit Narang, Ruben Caballero
  • Publication number: 20150372656
    Abstract: An electronic device may be provided with wireless circuitry. Control circuitry may be used to adjust the wireless circuitry. The wireless circuitry may include antennas that are tuned, adjustable impedance matching circuitry, antenna port selection circuitry, and adjustable transceiver circuitry. Wireless circuit adjustments may be made by ascertaining a current usage scenario for the electronic device based on sensor data, information from cellular base station equipment or other external equipment, signal-to-noise ratio information or other signal information, antenna impedance measurements, and other information about the operation of the electronic device.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 24, 2015
    Inventors: Matthew A. Mow, Thomas E. Biedka, Liang Han, Ming-Ju Tsai, James G. Judkins, Enrique Ayala Vazquez, Jayesh Nath, Hongfei Hu, Nanbo Jin, Hao Xu, Yijun Zhou, Yuehui Ouyang, Victor Lee, Mattia Pascolini, Ruben Caballero
  • Patent number: 9214718
    Abstract: A wireless electronic device may contain at least one antenna tuning element for use in tuning the operating frequency range of the device. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, and other load circuits that provide desired impedance characteristics. A test station may be used to measure the radio-frequency characteristics associated with the tuning element. The test station may provide adjustable temperature, power, and impedance control to help emulate a true application environment for the tuning element without having to place the tuning element within an actual device during testing. The test system may include at least one signal generator and a tester for measuring harmonic distortion values and may include at least two signal generators and a tester for measuring intermodulation distortion values.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: December 15, 2015
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Thomas E. Biedka, Liang Han, Rocco V. Dragone, Jr., Hongfei Hu, Dean F. Darnell, Joshua G. Nickel, Robert W. Schlub, Mattia Pascolini, Ruben Caballero
  • Publication number: 20150357703
    Abstract: Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. An inverted-F antenna may have first and second short circuit legs and a feed leg. The first and second short circuit legs and the feed leg may be connected to a folded antenna resonating element arm. The antenna resonating element arm and the first short circuit leg may be formed from portions of a conductive electronic device bezel. The folded antenna resonating element arm may have a bend. The bezel may have a gap that is located at the bend. Part of the folded resonating element arm may be formed from a conductive trace on a dielectric member. A spring may be used in connecting the conductive trace to the electronic device bezel portion of the antenna resonating element arm.
    Type: Application
    Filed: August 19, 2015
    Publication date: December 10, 2015
    Inventors: Joshua G. Nickel, Juan Zavala, Yijun Zhou, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Publication number: 20150349870
    Abstract: Dynamic antenna switching based on weighted signal to noise ratio (SNR). A wireless device may include multiple antennas. SNR at each active antenna may be calculated. An antenna-specific weight may be applied to each antenna's SNR. The antenna-specific weights may further be radio specific and/or transmit or receive specific in some cases. Antenna selection (possibly just for a specific radio and/or for transmit or receive operations, depending on the specificity of the antenna weights), including potentially switching which antenna is used, may be based on the resulting weighted SNR values for each antenna. If the antenna-specific weights are radio specific and/or transmit or receive operation specific, the method may be performed multiple times with different antenna-specific weights to select antenna(s) for different radios and/or for other operations.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 3, 2015
    Applicant: Apple Inc.
    Inventors: Xiaojun Chen, Peter M. Agboh, Indranil S. Sen, Hsin-Yuo Liu, Vusthia Sunil Reddy, Diego C. Hernandez, Digvijay A. Jadhav, Mohit Narang, Ruben Caballero
  • Patent number: 9179299
    Abstract: An electronic device such as a portable electronic device has wireless communications circuitry. Antennas in the electronic device may be used in transmitting radio-frequency antenna signals. A coupler and antenna signal phase and magnitude measurement circuitry may be used to determine when external objects are in the vicinity of the antenna by making antenna impedance measurements. In-band and out-of-band phase and magnitude signal measurements may be made in determining whether external objects are present. Additional sensors such as motion sensors, light and heat sensors, acoustic and electrical sensors may produce data that can be combined with the proximity data gathered using the antenna-based proximity sensor. In response to detecting that an external object such as a user's body is within a given distance of the antenna, the electronic device may reduce transmit powers, switch antennas, steer a phased antenna array, switch communications protocols, or take other actions.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: November 3, 2015
    Assignee: Apple Inc.
    Inventors: Robert W. Schlub, Ruben Caballero
  • Patent number: 9178278
    Abstract: Electronic devices may be provided with antenna structures such as distributed loop antenna resonating element structures. A distributed loop antenna may be formed on an elongated dielectric carrier and may have a longitudinal axis. The distributed loop antenna may include a loop antenna resonating element formed from a sheet of conductive material that extends around the longitudinal axis. A gap may be formed in the sheet of conductive material. The gap may be located under an opaque masking layer on the underside of a display cover glass associated with a display. The loop antenna resonating element may have a main body portion that includes the gap and may have an extended tail portion that extends between the display and conductive housing structures. The main body portion and extended tail portion may be configured to ensure that undesired waveguide modes are cut off during operation of the loop antenna.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: November 3, 2015
    Assignee: Apple Inc.
    Inventors: Jiang Zhu, Jerzy Guterman, Mattia Pascolini, Robert W. Schlub, Jayesh Nath, Enrique Ayala Vazquez, Jonathan Haylock, Boon W. Shiu, Ruben Caballero
  • Publication number: 20150311960
    Abstract: An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 29, 2015
    Applicant: Apple Inc.
    Inventors: Miroslav Samardzija, Yiren Wang, Yuehui Ouyang, Joseph Hakim, Qingxiang Li, Robert W. Schlub, Ruben Caballero, Siwen Yong, Erik G. de Jong
  • Patent number: 9172139
    Abstract: Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. A parallel-fed loop antenna may be formed from portions of an electronic device bezel and a ground plane. The antenna may operate in multiple communications bands. An impedance matching circuit for the antenna may be formed from a parallel-connected inductive element and a series-connected capacitive element. The bezel may surround a peripheral portion of a display that is mounted to the front of an electronic device. The bezel may contain a gap. Antenna feed terminals for the antenna may be located on opposing sides of the gap. The inductive element may bridge the gap and the antenna feed terminals. The capacitive element may be connected in series between one of the antenna feed terminals and a conductor in a transmission line located between the transceiver circuitry and the antenna.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: October 27, 2015
    Assignee: Apple Inc.
    Inventors: Mattia Pascolini, Robert J. Hill, Juan Zavala, Nanbo Jin, Qingxiang Li, Robert W. Schlub, Ruben Caballero
  • Patent number: 9166279
    Abstract: A wireless electronic device may include antenna structures and antenna tuning circuitry. The device may include a display mounted within a housing. A peripheral conductive member may run around the edges of the display and housing. Dielectric-filled gaps may divide the peripheral conductive member into individual segments. A ground plane may be formed within the housing. The ground plane and the segments of the peripheral conductive member may form antennas in upper and lower portions of the housing. The antenna tuning circuitry may include switchable inductor circuits and variable capacitor circuits for the upper and lower antennas. The switchable inductor circuits associated with the upper antenna may be tuned to provide coverage in at least two high-band frequency ranges of interest, whereas the variable capacitor circuits associated with the upper antenna may be tuned to provide coverage in at least two low-band frequency ranges of interest.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: October 20, 2015
    Assignee: Apple Inc.
    Inventors: Nanbo Jin, Mattia Pascolini, Matt A. Mow, Robert W. Schlub, Ruben Caballero
  • Patent number: 9164159
    Abstract: A manufacturing system for assembling wireless electronic devices is provided. The manufacturing system may include test stations for testing the radio-frequency performance of components that are to be assembled within the electronic devices. A reference test station may be calibrated using calibration coupons having known radio-frequency characteristics. The calibration coupons may include transmission line structures. The reference test station may measure verification standards to establish baseline measurement data. The verification standards may include circuitry having electrical components with given impedance values. Many verification coupons may be measured to enable testing for a wide range of impedance values. Test stations in the manufacturing system may subsequently measure the verification standards to generate test measurement data.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: October 20, 2015
    Assignee: Apple Inc.
    Inventors: Jayesh Nath, Liang Han, Matthew A. Mow, Ming-Ju Tsai, Joshua G. Nickel, Hao Xu, Peter Bevelacqua, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Patent number: 9160056
    Abstract: Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. An inverted-F antenna may have first and second short circuit legs and a feed leg. The first and second short circuit legs and the feed leg may be connected to a folded antenna resonating element arm. The antenna resonating element arm and the first short circuit leg may be formed from portions of a conductive electronic device bezel. The folded antenna resonating element arm may have a bend. The bezel may have a gap that is located at the bend. Part of the folded resonating element arm may be formed from a conductive trace on a dielectric member. A spring may be used in connecting the conductive trace to the electronic device bezel portion of the antenna resonating element arm.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: October 13, 2015
    Assignee: Apple Inc.
    Inventors: Josh Nickel, Juan Zavala, Yijun Zhou, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Patent number: 9161314
    Abstract: A method implemented on a mobile device that starts by receiving a temperature reading from a sensor included on the mobile device. The temperature reading is compared to a threshold temperature and a power cap is set when the temperature reading is greater than the threshold temperature. The power cap is a maximum transmission power of the mobile device. The method then determines if the mobile device is transmitting a critical message. The power cap is released for a period of time if the power cap is set and the mobile device is determined to be sending a critical message. Other embodiments are also described.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: October 13, 2015
    Assignee: Apple Inc.
    Inventors: Sanjeevi Balasubramanian, Ruben Caballero, Ricardo R. Velasco
  • Publication number: 20150280771
    Abstract: An electronic device has wireless communications circuitry including an adjustable antenna system coupled to a radio-frequency transceiver. The adjustable antenna system may include one or more adjustable electrical components that are controlled by storage and processing circuitry in the electronic device. The adjustable electrical components may include switches and components that can be adjusted between numerous different states. The adjustable electrical components may be coupled between antenna system components such as transmission line elements, matching network elements, antenna elements and antenna feeds. By adjusting the adjustable electrical components, the storage and processing circuitry can tune the adjustable antenna system to ensure that the adjustable antenna system covers communications bands of interest.
    Type: Application
    Filed: June 11, 2015
    Publication date: October 1, 2015
    Inventors: Matthew A. Mow, Robert W. Schlub, Mattia Pascolini, Robert J. Hill, Ruben Caballero
  • Patent number: 9134896
    Abstract: This invention is directed to an electronic device with an embedded authentication system for restricting access to device resources. The authentication system may include one or more sensors operative to detect biometric information of a user. The sensors may be positioned in the device such that the sensors may detect appropriate biometric information as the user operates the device, without requiring the user to perform a step for providing the biometric information (e.g., embedding a fingerprint sensor in an input mechanism instead of providing a fingerprint sensor in a separate part of the device housing). In some embodiments, the authentication system may be operative to detect a visual or temporal pattern of inputs to authenticate a user. In response to authenticating, a user may access restricted files, applications (e.g., applications purchased by the user), or settings (e.g., application settings such as contacts or saved game profile).
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: September 15, 2015
    Assignee: Apple Inc.
    Inventors: Anthony Fadell, Andrew Hodge, Stephan Schell, Ruben Caballero, Jesse Lee Dorogusker, Stephen Zadesky, Emery Sanford
  • Patent number: 9128601
    Abstract: Described are methods, devices and computer-readable media for displaying, on a touch screen display, a user interface that includes an unlocked element, detecting user inputs that include movement of a finger contact on the unlocked element toward the first location, wherein the first location is in respective direction from the unlocked element. Fingerprint data is obtained based on the finger movement, and based on the obtained fingerprint data, it is determined whether the user inputs meet unlock criteria or not.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: September 8, 2015
    Assignee: Apple Inc.
    Inventors: Anthony Fadell, Andrew Hodge, Stephan Schell, Ruben Caballero, Jesse Lee Doroguskar, Stephen Zadesky, Emery Sanford
  • Publication number: 20150249916
    Abstract: An electronic device such as a portable electronic device has wireless communications circuitry. Antennas in the electronic device may be used in transmitting radio-frequency antenna signals. A coupler and antenna signal phase and magnitude measurement circuitry may be used to determine when external objects are in the vicinity of the antenna by making antenna impedance measurements. In-band and out-of-band phase and magnitude signal measurements may be made in determining whether external objects are present. Additional sensors such as motion sensors, light and heat sensors, acoustic and electrical sensors may produce data that can be combined with the proximity data gathered using the antenna-based proximity sensor. In response to detecting that an external object such as a user's body is within a given distance of the antenna, the electronic device may reduce transmit powers, switch antennas, steer a phased antenna array, switch communications protocols, or take other actions.
    Type: Application
    Filed: May 18, 2015
    Publication date: September 3, 2015
    Inventors: Robert W. Schlub, Ruben Caballero