Patents by Inventor Rudy A. Pretti

Rudy A. Pretti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150216676
    Abstract: A selectively expanding spine cage has a minimized cross section in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Expanding selectively (anteriorly, along the vertical axis of the spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion. The cage shape intends to rest proximate to the anterior column cortices securing the desired spread and fixation, allowing for bone graft in, around, and through the implant for arthrodesis whereas for arthroplasty it fixes to endpoints but cushions the spine naturally.
    Type: Application
    Filed: April 17, 2015
    Publication date: August 6, 2015
    Inventors: Damien J. Shulock, John E. Ashley, Thomas Grotz, Rudy Pretti
  • Publication number: 20150134064
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one fixation element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to engage a surface of an adjacent vertebral body and secure the implant between two vertebral bodies. Preferably, the implant is expandable and has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it must pass to be deployed within the intervertebral space. Once within the space between vertebral bodies, the implant can be expanded so as to engage the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can be corrected, and natural curvatures restored and maintained.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 14, 2015
    Inventors: R. Thomas Grotz, Rudy A. Pretti
  • Patent number: 9028550
    Abstract: A selectively expanding spine cage has a minimized cross section in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Expanding selectively (anteriorly, along the vertical axis of the spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion. The cage shape intends to rest proximate to the anterior column cortices securing the desired spread and fixation, allowing for bone graft in, around, and through the implant for arthrodesis whereas for arthroplasty it fixes to endpoints but cushions the spine naturally.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 12, 2015
    Assignee: CoAlign Innovations, Inc.
    Inventors: Damien J. Shulock, John E. Ashley, Thomas Grotz, Rudy Pretti
  • Patent number: 8992620
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 31, 2015
    Assignee: CoAlign Innovations, Inc.
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Damien J. Shulock, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti, Dennis Crandall
  • Patent number: 8956413
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can also be corrected, and natural curvatures restored. Preferably, the implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system preferably having a plurality of locking elements to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: February 17, 2015
    Assignee: CoAlign Innovations, Inc.
    Inventors: John E. Ashley, Murali Kadaba, Philip J. Simpson, Walter Dean Gillespie, Thomas Grotz, George A. Mansfield, III, David G. Matsuura, Rudy Pretti
  • Patent number: 8932355
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one fixation element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to engage a surface of an adjacent vertebral body and secure the implant between two vertebral bodies. Preferably, the implant is expandable and has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it must pass to be deployed within the intervertebral space. Once within the space between vertebral bodies, the implant can be expanded so as to engage the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can be corrected, and natural curvatures restored and maintained.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: January 13, 2015
    Assignee: CoAlign Innovations, Inc.
    Inventors: R. Thomas Grotz, Rudy A. Pretti
  • Patent number: 8696751
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a refracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: April 15, 2014
    Assignee: CoAlign Innovations, Inc.
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Damien J. Shulock, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti
  • Publication number: 20130338710
    Abstract: Disclosed herein are methods and devices for securing soft tissue to a rigid material such as bone. A bone anchor is described that comprises an anchor body with expandable tines and a spreader that expands the tines into bone. Also disclosed is a bone anchor that comprises a base and a top such that suture material may be attached to apertures in the anchor top or else compressed between surfaces on the base and top to secure the suture to the anchor. Also described is an inserter that can be used to insert the bone anchor into bone and move the spreader relative to the anchor body attach suture material. Also described is an inserter that can be used to insert the bone anchor into bone and move the anchor top relative to the anchor body or anchor base to attach to or clamp suture material there between.
    Type: Application
    Filed: August 21, 2013
    Publication date: December 19, 2013
    Applicant: KFx Medical Corporation
    Inventors: Malcolm Heaven, Mikxay Sirivong, Rudy Pretti, Michael Ko, John P. Greelis
  • Publication number: 20130261748
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can also be corrected, and natural curvatures restored. Preferably, the implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system preferably having a plurality of locking elements to lock the implant in an extended configuration.
    Type: Application
    Filed: April 8, 2013
    Publication date: October 3, 2013
    Inventors: John E. Ashley, Murali Kadaba, Philip J. Simpson, Walter Dean Gillespie, Thomas Grotz, George A. Mansfield, III, David G. Matsuura, Rudy Pretti
  • Publication number: 20130253650
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 26, 2013
    Applicant: CoAlign Innovations, Inc.
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Damien J. Shulock, Murali Kadaba, David G. Matsuura, George A. Mansfield, Thomas Grotz, Rudy Pretti
  • Patent number: 8523902
    Abstract: Disclosed herein are methods and devices for securing soft tissue to a rigid material such as bone. A bone anchor is described that includes an anchor body with expandable tines and a spreader that expands the tines into bone. Also disclosed is a bone anchor that includes a base and a top such that suture material may be attached to apertures in the anchor top or else compressed between surfaces on the base and top to secure the suture to the anchor. Methods are described that allow use of single bone anchor to secure tissue to bone or also to use more than one bone anchor to provide multiple lengths of suture material to compress a large area of soft tissue against bone.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: September 3, 2013
    Assignee: KFx Medical Corporation
    Inventors: Malcolm Heaven, Mikxay Sirivong, Rudy Pretti, Michael Ko, John P. Greelis
  • Patent number: 8480741
    Abstract: A selectively expanding spine cage has a minimized diameter in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. The cage enhances spinal arthrodesis by creating a rigid spine segment. Expanding selectively, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion. Greater distraction height is achieved without an increase in implant size through the use of interfitted stages.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: July 9, 2013
    Assignee: CoAlign Innovations, Inc.
    Inventors: Thomas Grotz, Rudy Pretti
  • Patent number: 8454695
    Abstract: A selectively expanding spine cage has a minimized diameter in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. The cage enhances spinal arthrodesis by creating a rigid spine segment. Expanding selectively, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion. The cage shape intends to rest proximate to the anterior column cortices securing the desired spread and fixation, allowing for bone graft in, around, and through the implant.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: June 4, 2013
    Assignee: CoAlign Innovations, Inc.
    Inventors: Thomas Grotz, Rudy Pretti
  • Patent number: 8435296
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can also be corrected, and natural curvatures restored. Preferably, the implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system preferably having a plurality of locking elements to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: May 7, 2013
    Assignee: CoAlign Innovations, Inc.
    Inventors: Murali Kadaba, Philip J. Simpson, John E. Ashley, Walter Dean Gillespie, Thomas Grotz, George A. Mansfield, III, David G. Matsuura, Rudy Pretti
  • Patent number: 8394143
    Abstract: A selectively expanding spine cage has a minimized diameter in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. Hydraulic extension of extendable members permit the cage to conformably engage between vertebral bodies to effectively distract the disc space and rigidly fix the spine.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 12, 2013
    Assignee: Coalign Innovations, Inc.
    Inventors: Thomas Grotz, Rudy Pretti
  • Publication number: 20120116518
    Abstract: A selectively expanding spine cage has a minimized diameter in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of vertebrae to effectively distract the anterior disc space, stabilize the motion segments, eliminate pathologic spine motion, or effect vertebral body replacement. Expanding selectively (anteriorly, along the vertical axis of the spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion. The cage shape intends to rest proximate to the anterior column cortices securing the desired spread and fixation, allowing for bone graft in, around, and through the implant for arthrodesis whereas for arthroplasty it fixes to endpoints but cushions the spine naturally.
    Type: Application
    Filed: December 5, 2011
    Publication date: May 10, 2012
    Applicant: COALIGN INNOVATIONS, INC.
    Inventors: Thomas Grotz, Rudy Pretti
  • Patent number: 8070813
    Abstract: A selectively expanding spine cage has a minimized diameter in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between vertebral bodies to effectively distract the disc space and rigidly fix the spine. Extendible members with multiple interfitting stages permit a relatively large range of distraction capability in a compact package.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: December 6, 2011
    Assignee: CoAlign Innovations, Inc.
    Inventors: Thomas Grotz, Rudy Pretti
  • Publication number: 20110270398
    Abstract: A selectively expanding spine cage has a minimized diameter in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can be corrected, and natural curvatures restored and maintained. The cage enhances spinal arthrodesis by creating a rigid spine segment, or if filled with compressible substances, the cage can be used for motion preservation between vertebral bodies. Expanding selectively (anteriorly, along the vertical axis of the spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion.
    Type: Application
    Filed: July 14, 2011
    Publication date: November 3, 2011
    Applicant: COALIGN INNOVATIONS, INC.
    Inventors: Thomas Grotz, Rudy Pretti
  • Patent number: 7985256
    Abstract: A selectively expanding spine cage has a minimized diameter in its unexpanded state that is smaller that the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can be corrected, and natural curvatures restored and maintained. The cage enhances spinal arthrodesis by creating a rigid spine segment, or if filled with compressible substances, the cage can be used for motion preservation between vertebral bodies. Expanding selectively (anteriorly, along the vertical axis of the spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: July 26, 2011
    Assignee: CoAlign Innovations, Inc.
    Inventors: Thomas Grotz, Rudy Pretti
  • Publication number: 20110130835
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a refracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration.
    Type: Application
    Filed: May 25, 2010
    Publication date: June 2, 2011
    Applicant: INNVOTEC SURGICAL, INC.
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Damien J. Shulock, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti