Patents by Inventor Ruey-Hsin Liu

Ruey-Hsin Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11444169
    Abstract: A transistor device with a recessed gate structure is provided. In some embodiments, the transistor device comprises a semiconductor substrate comprising a device region surrounded by an isolation structure and a pair of source/drain regions disposed in the device region and laterally spaced apart one from another in a first direction. A gate structure overlies the device region and the isolation structure and arranged between the pair of source/drain regions. The gate structure comprises a pair of recess regions disposed on opposite sides of the device region in a second direction perpendicular to the first direction. A channel region is disposed in the device region underneath the gate structure. The channel region has a channel width extending in the second direction from one of the recess regions to the other one of the recess regions.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: September 13, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Liang Chu, Chien-Chih Chou, Chih-Chang Cheng, Yi-Huan Chen, Kong-Beng Thei, Ming-Ta Lei, Ruey-Hsin Liu, Ta-Yuan Kung
  • Patent number: 11437466
    Abstract: An avalanche-protected field effect transistor includes, within a semiconductor substrate, a body semiconductor layer and a doped body contact region having a doping of a first conductivity type, and a source region a drain region having a doping of a second conductivity type. A buried first-conductivity-type well may be located within the semiconductor substrate. The buried first-conductivity-type well underlies, and has an areal overlap in a plan view with, the drain region, and is vertically spaced apart from the drain region, and has a higher atomic concentration of dopants of the first conductivity type than the body semiconductor layer. The configuration of the field effect transistor induces more than 90% of impact ionization electrical charges during avalanche breakdown to flow from the source region, to pass through the buried first-conductivity-type well, and to impinge on a bottom surface of the drain region.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: September 6, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Liang-Yu Su, Hung-Chih Tsai, Ruey-Hsin Liu, Ming-Ta Lei, Chang-Tai Yang, Te-Yin Hsia, Yu-Chang Jong, Nan-Ying Yang
  • Patent number: 11424244
    Abstract: A device includes a vertical transistor comprising a first gate in a first trench, wherein the first gate comprises a dielectric layer and a gate region over the dielectric layer, and a second gate in a second trench, a high voltage lateral transistor immediately adjacent to the vertical transistor and a low voltage lateral transistor, wherein the high voltage lateral transistor is between the vertical transistor and the low voltage lateral transistor.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: August 23, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Wai Ng, Hsueh-Liang Chou, Po-Chih Su, Ruey-Hsin Liu
  • Publication number: 20220254923
    Abstract: A high-voltage device includes a first frame-like isolation and a second frame-like isolation separated from each other, a first frame-like gate structure covering the first frame-like isolation, a second frame-like gate structure covering the second frame-like isolation, a first drain region enclosed by the first frame-like isolation, a second drain region enclosed by the second frame-like isolation, a first frame-like source region surrounding the first frame-like gate structure, a second frame-like source region surrounding the second frame-like gate structure, a first doped region surrounding the first and second frame-like gate structures, and a second doped region disposed between the first and second frame-like gate structures. The first and second drain regions, and the first and second frame-like source regions include a first conductivity type. The first and the second doped region include a second conductivity type.
    Type: Application
    Filed: April 27, 2022
    Publication date: August 11, 2022
    Inventors: HUNG-SEN WANG, YUN-TA TSAI, RUEY-HSIN LIU, SHIH-FEN HUANG, HO-CHUN LIOU
  • Publication number: 20220223625
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. The integrated chip includes a semiconductor substrate having a device substrate overlying a handle substrate and an insulator layer disposed between the device substrate and the handle substrate. A gate electrode overlies the device substrate between a drain region and a source region. A conductive via extends through the device substrate and the insulator layer to contact the handle substrate. A first isolation structure is disposed within the device substrate and comprises a first isolation segment disposed laterally between the gate electrode and the conductive via. A contact region is disposed within the device substrate between the first isolation segment and the conductive via. A conductive gate electrode directly overlies the first isolation segment and is electrically coupled to the contact region.
    Type: Application
    Filed: May 18, 2021
    Publication date: July 14, 2022
    Inventors: Hsin-Chih Chiang, Tung-Yang Lin, Ruey-Hsin Liu, Ming-Ta Lei
  • Patent number: 11322609
    Abstract: A high-voltage device includes a substrate, a first well region disposed in the substrate, at least a first isolation, a frame-like gate structure over the first well region and covering a portion of the first isolation, a drain region in the first well region and separated from the frame-like gate structure by the first isolation, and a source region separated from the drain region by the first isolation and the frame-like gate structure. The first well region, the drain region and the source region include a first conductivity type, and the substrate includes a second conductivity type. The first conductivity type and the second conductivity type are complementary to each other.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: May 3, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hung-Sen Wang, Yun-Ta Tsai, Ruey-Hsin Liu, Shih-Fen Huang, Ho-Chun Liou
  • Publication number: 20220052153
    Abstract: An avalanche-protected field effect transistor includes, within a semiconductor substrate, a body semiconductor layer and a doped body contact region having a doping of a first conductivity type, and a source region a drain region having a doping of a second conductivity type. A buried first-conductivity-type well may be located within the semiconductor substrate. The buried first-conductivity-type well underlies, and has an areal overlap in a plan view with, the drain region, and is vertically spaced apart from the drain region, and has a higher atomic concentration of dopants of the first conductivity type than the body semiconductor layer. The configuration of the field effect transistor induces more than 90% of impact ionization electrical charges during avalanche breakdown to flow from the source region, to pass through the buried first-conductivity-type well, and to impinge on a bottom surface of the drain region.
    Type: Application
    Filed: August 11, 2020
    Publication date: February 17, 2022
    Inventors: Liang-Yu SU, Hung-Chih TSAI, Ruey-Hsin LIU, Ming-Ta LEI, Chang-Tai YANG, Te-Yin HSIA, Yu-Chang JONG, Nan-Ying YANG
  • Publication number: 20220029020
    Abstract: The present disclosure describes a semiconductor structure that includes a channel region, a source region adjacent to the channel region, a drain region, a drift region adjacent to the drain region, and a dual gate structure. The dual gate structure includes a first gate structure over portions of the channel region and portions of the drift region. The dual gate structure also includes a second gate structure over the drift region.
    Type: Application
    Filed: January 5, 2021
    Publication date: January 27, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Chih SU, Ruey-Hsin LIU, Pei-Lun WANG, Jia-Rui LEE, Jyun-Guan JHOU
  • Publication number: 20210376100
    Abstract: A semiconductor device and method for forming the semiconductor device are provided. In some embodiments, a semiconductor substrate comprises a device region. An isolation structure extends laterally in a closed path to demarcate the device region. A first source/drain region and a second source/drain region are in the device region and laterally spaced. A sidewall of the first source/drain region directly contacts the isolation structure at a first isolation structure sidewall, and remaining sidewalls of the first source/drain region are spaced from the isolation structure. A selectively-conductive channel is in the device region, and extends laterally from the first source/drain region to the second source/drain region. A plate comprises a central portion and a first peripheral portion. The central portion overlies the selectively-conductive channel, and the first peripheral portion protrudes from the central portion towards the first isolation structure sidewall.
    Type: Application
    Filed: August 18, 2021
    Publication date: December 2, 2021
    Inventors: Chih-Chang Cheng, Fu-Yu Chu, Ming-Ta Lei, Ruey-Hsin Liu, Shih-Fen Huang
  • Publication number: 20210359129
    Abstract: A semiconductor device is provided. The semiconductor device includes a substrate, a field plate, a gate electrode, and a first dielectric layer. The substrate has a top surface. The substrate includes a first drift region with a first conductivity type extending from the top surface of the substrate into the substrate, and includes a second drill region with the first conductivity type extending from the top surface of the substrate into the substrate and adjacent to the first drift region. The field plate is over the substrate. The gate electrode has a first portion and a second portion, wherein the first portion of the gate electrode is located over the field plate. The first dielectric layer is between the substrate and the field plate. The first portion of the gate electrode is overlapping with a boundary of the first drift region and the second drift region in the substrate.
    Type: Application
    Filed: July 30, 2021
    Publication date: November 18, 2021
    Inventors: YOGENDRA YADAV, CHI-CHIH CHEN, RUEY-HSIN LIU, CHIH-WEN YAO
  • Publication number: 20210358863
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes an isolation structure disposed in a semiconductor substrate, where an inner perimeter of the isolation structure demarcates a device region of the semiconductor substrate. A gate is disposed over the device region, where an outer perimeter of the gate is disposed within the inner perimeter of the isolation structure. A first source/drain region is disposed in the device region and on a first side of the gate. A second source/drain region is disposed in the device region and on a second side of the gate opposite the first side. A silicide blocking structure partially covers the gate, partially covers the first source/drain region, and partially covers the isolation structure, where a first sidewall of the silicide blocking structure is disposed between first opposite sidewalls of the gate.
    Type: Application
    Filed: July 29, 2021
    Publication date: November 18, 2021
    Inventors: Chih-Chang Cheng, Fu-Yu Chu, Ruey-Hsin Liu
  • Patent number: 11158739
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a substrate; a gate structure formed over the substrate; a source region and a drain region formed in the substrate on either side of the gate structure, the source region and the drain region both having a first type of conductivity; and a field plate formed over the substrate between the gate structure and the drain region; wherein the field plate is coupled to the source region or a bulk electrode of the substrate. An associated method for fabricating the semiconductor structure is also disclosed.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: October 26, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chih-Chang Cheng, Fu-Yu Chu, Ruey-Hsin Liu, Kuang-Hsin Chen, Chih-Hsin Ko, Shih-Fen Huang
  • Publication number: 20210273069
    Abstract: A transistor device with a recessed gate structure is provided. In some embodiments, the transistor device comprises a semiconductor substrate comprising a device region surrounded by an isolation structure and a pair of source/drain regions disposed in the device region and laterally spaced apart one from another in a first direction. A gate structure overlies the device region and the isolation structure and arranged between the pair of source/drain regions. The gate structure comprises a pair of recess regions disposed on opposite sides of the device region in a second direction perpendicular to the first direction. A channel region is disposed in the device region underneath the gate structure. The channel region has a channel width extending in the second direction from one of the recess regions to the other one of the recess regions.
    Type: Application
    Filed: July 15, 2020
    Publication date: September 2, 2021
    Inventors: Chen-Liang Chu, Chien-Chih Chou, Chih-Chang Cheng, Yi-Huan Chen, Kong-Beng Thei, Ming-Ta Lei, Ruey-Hsin Liu, Ta-Yuan Kung
  • Patent number: 11107899
    Abstract: A semiconductor device and method for forming the semiconductor device are provided. In some embodiments, a semiconductor substrate comprises a device region. An isolation structure extends laterally in a closed path to demarcate the device region. A first source/drain region and a second source/drain region are in the device region and laterally spaced. A sidewall of the first source/drain region directly contacts the isolation structure at a first isolation structure sidewall, and remaining sidewalls of the first source/drain region are spaced from the isolation structure. A selectively-conductive channel is in the device region, and extends laterally from the first source/drain region to the second source/drain region. A plate comprises a central portion and a first peripheral portion. The central portion overlies the selectively-conductive channel, and the first peripheral portion protrudes from the central portion towards the first isolation structure sidewall.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: August 31, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chang Cheng, Fu-Yu Chu, Ming-Ta Lei, Ruey-Hsin Liu, Shih-Fen Huang
  • Patent number: 11088277
    Abstract: A semiconductor device is provided. The semiconductor device includes a substrate, a source region, a drain region, a filed plate and a gate electrode. The source region is of a first conductivity type located at a first side within the substrate. The drain region is of the first conductive type located at a second side within the substrate opposite to the first side. The field plate is located over the substrate and between the source region and the drain region. A portion of the gate electrode is located over the field plate.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: August 10, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yogendra Yadav, Chi-Chih Chen, Ruey-Hsin Liu, Chih-Wen Yao
  • Patent number: 11088085
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes an isolation structure disposed in a semiconductor substrate, where an inner perimeter of the isolation structure demarcates a device region of the semiconductor substrate. A gate is disposed over the device region, where an outer perimeter of the gate is disposed within the inner perimeter of the isolation structure. A first source/drain region is disposed in the device region and on a first side of the gate. A second source/drain region is disposed in the device region and on a second side of the gate opposite the first side. A silicide blocking structure partially covers the gate, partially covers the first source/drain region, and partially covers the isolation structure, where a first sidewall of the silicide blocking structure is disposed between first opposite sidewalls of the gate.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: August 10, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chang Cheng, Fu-Yu Chu, Ruey-Hsin Liu
  • Publication number: 20210226025
    Abstract: A semiconductor device includes a semiconductor substrate, a gate dielectric, a gate electrode, and a pair of source/drain regions. The gate dielectric is disposed in the semiconductor substrate having an upper boundary lower than an upper surface of the semiconductor substrate, and an upper surface flush with the upper surface of the semiconductor substrate. The gate electrode is disposed over the gate dielectric having a first section over the upper boundary of the gate dielectric and a second section over the upper surface of the gate dielectric. The second section partially covers and partially exposes the upper surface of the gate dielectric. The pair of source/drain regions are disposed on opposing sides of the gate dielectric.
    Type: Application
    Filed: April 7, 2021
    Publication date: July 22, 2021
    Inventors: TA-YUAN KUNG, RUEY-HSIN LIU, CHEN-LIANG CHU, CHIH-WEN YAO, MING-TA LEI
  • Publication number: 20210202708
    Abstract: A semiconductor device includes a substrate and a gate structure over the substrate. The semiconductor device includes a source in the substrate on a first side of the gate structure. The semiconductor device further includes a drain in the substrate on a second side of the gate structure. The semiconductor device further includes a first well having a first dopant type, wherein the first well contacts at least two surfaces of the source. The semiconductor device further includes a second well having the first dopant type, wherein the second well contacts at least two surfaces of the drain. The semiconductor device further includes a deep well below the first well and below the second well, wherein the second well extends between the first well and the deep well. In some embodiments, the deep well has a second dopant type, and the second dopant type is opposite the first dopant type.
    Type: Application
    Filed: March 16, 2021
    Publication date: July 1, 2021
    Inventors: Chih-Chang CHENG, Fu-Yu CHU, Ruey-Hsin LIU
  • Patent number: 11031495
    Abstract: A method includes forming a first semiconductor layer over a substrate, forming a second semiconductor layer over the first semiconductor layer, forming a first trench and a second trench through in the first semiconductor layer and the second semiconductor layer, wherein a width of the second trench is different from a width of the first trench, forming a dielectric region in the first trench and forming a first gate region in the first trench and over the dielectric region, and a second gate region in the second trench.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: June 8, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wai Ng, Hsueh-Liang Chou, Po-Chih Su, Ruey-Hsin Liu
  • Publication number: 20210167205
    Abstract: A high-voltage device includes a substrate, at least a first isolation in the substrate, a first well region, a frame-like gate structure over the first well region and covering a portion of the first isolation, a drain region in the first well region and separated from the frame-like gate structure by the first isolation, and a source region separated from the drain region by the first isolation and the frame-like gate structure. The first well region, the drain region and the source region include a first conductivity type, and the substrate includes a second conductivity type. The first conductivity type and the second conductivity type are complementary to each other.
    Type: Application
    Filed: June 19, 2020
    Publication date: June 3, 2021
    Inventors: HUNG-SEN WANG, YUN-TA TSAI, RUEY-HSIN LIU, SHIH-FEN HUANG, HO-CHUN LIOU