Patents by Inventor Ruqiang Bao

Ruqiang Bao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220393019
    Abstract: A semiconductor device is provided. The semiconductor device includes a bottom source/drain; a top source/drain; a fin provided between the bottom source/drain and the top source/drain, the fin including a first fin structure and a second fin structure that are symmetric to each other in a plan view. Each of the first and second fin structures includes a main fin extending laterally in a first direction, and first and second extension fins extending laterally from the main fin in a second direction perpendicular to the first direction. The main fin extends laterally in the first direction beyond where the first and second extension fins connect to the main fin.
    Type: Application
    Filed: June 8, 2021
    Publication date: December 8, 2022
    Inventors: Heng Wu, Lan Yu, Dechao Guo, Junli Wang, RUQIANG BAO, Ruilong Xie
  • Publication number: 20220384574
    Abstract: A semiconductor structure may include one or more nanosheet field-effect transistors formed on a first portion of a substrate, and one or more fin field-effect transistors formed on a second portion of the substrate. A source drain of the one or more nanosheet field-effect transistors or a gate of the one or more nanosheet field-effect transistors may be separated from the substrate by an isolation layer. A source drain of the one or more fin field-effect transistors or a gate of the one or more fin field-effect transistors may be in direct contact with the substrate. The semiconductor structure may include a gate spacer surrounding the gate of the one or more nanosheet field-effect transistors and the gate of the one or more fin field-effect transistors.
    Type: Application
    Filed: May 25, 2021
    Publication date: December 1, 2022
    Inventors: Julien Frougier, Sagarika Mukesh, RUQIANG BAO, Andrew M. Greene, Jingyun Zhang, Nicolas Loubet, Veeraraghavan S. Basker
  • Patent number: 11515431
    Abstract: A semiconductor structure and a method for fabricating the same. The semiconductor structure includes at least a first channel region and a second channel region. The first channel region and the second channel region each include metal gate structures surrounding a different nanosheet channel layer. The metal gate structures of the first and second channel regions are respectively separated from each other by an unfilled gap. The method includes forming a gap fill layer between and in contact with gate structures surrounding nanosheet channel layers in multiple channel regions. Then, after the gap fill layer has been formed for each nanosheet stack, a masking layer is formed over the gate structures and the gap fill layer in at least a first channel region. The gate structures and the gap fill layer in at least a second channel region remain exposed.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: November 29, 2022
    Assignee: International Business Machines Corporation
    Inventors: Indira Seshadri, Ekmini Anuja De Silva, Jing Guo, Ruqiang Bao, Muthumanickam Sankarapandian, Nelson Felix
  • Patent number: 11476418
    Abstract: A semiconductor structure may include a heater surrounded by a second dielectric layer, a projection liner on top of the second dielectric layer, and a phase change material layer above the projection liner. A top surface of the projection liner may be substantially flush with a top surface of the heater. The projection liner may separate the phase change material layer from the second dielectric layer. The projection liner may provide a parallel conduction path in the crystalline phase and the amorphous phase of the phase change material layer. The semiconductor structure may include a bottom electrode below and in electrical contact with the heater and a top electrode above and in electrical contact with the phase change material layer.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: October 18, 2022
    Assignee: International Business Machines Corporation
    Inventors: Injo Ok, Ruqiang Bao, Andrew Herbert Simon, Kevin W. Brew, Nicole Saulnier, Iqbal Rashid Saraf, Prasad Bhosale
  • Patent number: 11456219
    Abstract: A technique relates to a semiconductor device. An N-type field effect transistor (NFET) and a P-type field effect transistor (PFET) each include an inner work function metal, an outer work function metal, a first nanosheet including an inner channel surface having a first threshold voltage, and a second nanosheet including an outer channel surface having a second threshold voltage. The outer work function metal is modified so as to cause the outer channel surface for the second nanosheet to have the second threshold voltage within a predefined amount of the first threshold voltage for the inner channel surface of the first nanosheet, the predefined amount being within about 20 millivolts (mV).
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: September 27, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Dechao Guo, Junli Wang, Heng Wu
  • Patent number: 11456415
    Abstract: A semiconductor structure may include a heater surrounded by a dielectric layer, a projection liner on top of the heater, a phase change material layer above the projection liner, and a top electrode contact surrounding a top portion of the phase change material layer, The projection liner may cover a top surface of the heater. The projection liner may separate the phase change material layer from the second dielectric layer and the heater. The projection liner may provide a parallel conduction path in the crystalline phase and the amorphous phase of the phase change material layer. The top electrode contact may be separated from the phase change material layer by a metal liner. The semiconductor structure may include a bottom electrode below and in electrical contact with the heater and a top electrode above and in electrical contact with the phase change material layer.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: September 27, 2022
    Assignee: International Business Machines Corporation
    Inventors: Injo Ok, Ruqiang Bao, Andrew Herbert Simon, Kevin W. Brew, Nicole Saulnier, Iqbal Rashid Saraf, Muthumanickam Sankarapandian, Sanjay C. Mehta
  • Publication number: 20220238682
    Abstract: A method for fabricating a semiconductor device includes forming an interfacial layer and a dielectric layer on a base structure and around channels of a first gate-all-around field-effect transistor (GAA FET) device within a first region and a second GAA FET device within a second region, forming at least a scavenging metal layer in the first and second regions, and performing an anneal process after forming at least one cap layer.
    Type: Application
    Filed: April 12, 2022
    Publication date: July 28, 2022
    Inventors: Ruqiang Bao, Huiming Bu
  • Patent number: 11393725
    Abstract: A method for fabricating a semiconductor device including multiple pairs of threshold voltage (Vt) devices includes forming a stack on a base structure having a first region corresponding to a first pair of Vt devices, a second region corresponding to a second pair of Vt devices and a third region corresponding to a third pair of Vt devices. The stack includes a first dipole layer, a first sacrificial layer formed on the first dipole layer, a second sacrificial layer formed on the first sacrificial layer, and a third sacrificial layer formed on the second sacrificial layer. The method further includes forming a second dipole layer different from the first dipole layer.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: July 19, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Vijay Narayanan, Terence B. Hook, Hemanth Jagannathan
  • Publication number: 20220181439
    Abstract: Techniques are provided to fabricate semiconductor devices having a nanosheet field-effect transistor device disposed on a semiconductor substrate. The nanosheet field-effect transistor device includes a nanosheet stack structure including a semiconductor channel layer and a source/drain region in contact with an end portion of the semiconductor channel layer of the nanosheet stack structure. A trench formed in the source/drain region is filled with a metal-based material. The metal-based material filling the trench in the source/drain region mitigates the effect of source/drain material overfill on the contact resistance of the semiconductor device.
    Type: Application
    Filed: February 22, 2022
    Publication date: June 9, 2022
    Inventors: Heng Wu, Dechao Guo, Ruqiang Bao, Junli Wang, Lan Yu, Reinaldo Vega, Adra Carr
  • Publication number: 20220181546
    Abstract: A semiconductor structure may include a heater surrounded by a dielectric layer, a projection liner on top of the heater, a phase change material layer above the projection liner, and a top electrode contact surrounding a top portion of the phase change material layer, The projection liner may cover a top surface of the heater. The projection liner may separate the phase change material layer from the second dielectric layer and the heater. The projection liner may provide a parallel conduction path in the crystalline phase and the amorphous phase of the phase change material layer. The top electrode contact may be separated from the phase change material layer by a metal liner. The semiconductor structure may include a bottom electrode below and in electrical contact with the heater and a top electrode above and in electrical contact with the phase change material layer.
    Type: Application
    Filed: December 8, 2020
    Publication date: June 9, 2022
    Inventors: Injo Ok, RUQIANG BAO, Andrew Herbert Simon, Kevin W. Brew, Nicole Saulnier, Iqbal Rashid Saraf, Muthumanickam Sankarapandian, Sanjay C. Mehta
  • Publication number: 20220181547
    Abstract: A semiconductor structure may include a heater surrounded by a second dielectric layer. a projection liner on top of the second dielectric layer, and a phase change material layer above the projection liner. A top surface of the projection liner may be substantially flush with a top surface of the heater. The projection liner may separate the phase change material layer from the second dielectric layer. The projection liner may provide a parallel conduction path in the crystalline phase and the amorphous phase of the phase change material layer. The semiconductor structure may include a bottom electrode below and in electrical contact with the heater and a top electrode above and in electrical contact with the phase change material layer.
    Type: Application
    Filed: December 8, 2020
    Publication date: June 9, 2022
    Inventors: Injo OK, RUQIANG BAO, Andrew Herbert SIMON, Kevin W. BREW, Nicole SAULNIER, Iqbal Rashid SARAF, Prasad BHOSALE
  • Patent number: 11329136
    Abstract: A method for fabricating a semiconductor device includes forming an interfacial layer and a dielectric layer on a base structure and around channels of a first gate-all-around field-effect transistor (GAA FET) device within a first region and a second GAA FET device within a second region, forming at least a scavenging metal layer in the first and second regions, and performing an anneal process after forming at least one cap layer.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: May 10, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Huiming Bu
  • Patent number: 11289573
    Abstract: Techniques are provided to fabricate semiconductor devices having a nanosheet field-effect transistor device disposed on a semiconductor substrate. The nanosheet field-effect transistor device includes a nanosheet stack structure including a semiconductor channel layer and a source/drain region in contact with an end portion of the semiconductor channel layer of the nanosheet stack structure. A trench formed in the source/drain region is filled with a metal-based material. The metal-based material filling the trench in the source/drain region mitigates the effect of source/drain material overfill on the contact resistance of the semiconductor device.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: March 29, 2022
    Assignee: International Business Machines Corporation
    Inventors: Heng Wu, Dechao Guo, Ruqiang Bao, Junli Wang, Lan Yu, Reinaldo Vega, Adra Carr
  • Patent number: 11282838
    Abstract: An embodiment of the invention may include a semiconductor structure and method of manufacturing. The semiconductor structure may include a top channel and a bottom channel, wherein the top channel includes a plurality of vertically oriented channels. The bottom channel includes a plurality of horizontally oriented channels. The semiconductor structure may include a gate surrounding the top channel and the bottom channel. The semiconductor structure may include spacers located on each side of the gate. A first spacer includes a dielectric material located between the plurality of vertically oriented channels. A second spacer includes a dielectric material located between the plurality of horizontally oriented channels. This may enable spacer formation between the vertical spacers.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: March 22, 2022
    Assignee: International Business Machines Corporation
    Inventors: Chen Zhang, Dechao Guo, Junli Wang, Ruilong Xie, Kangguo Cheng, Juntao Li, Chanro Park, Ruqiang Bao, Sung Dae Suk, Lan Yu, Heng Wu
  • Patent number: 11282962
    Abstract: A method of controlling threshold voltage shift that includes forming a first set of channel semiconductor regions on a first portion of a substrate, and forming a second set of channel semiconductor regions on a second portion of the substrate. A gate structure is formed on the first set of channel semiconductor regions and the second set of channel, wherein the gate structure extends from a first portion of the substrate over an isolation region to a second portion of the substrate. A gate cut region is formed in the gate structure over the isolation region. An oxygen scavenging metal containing layer is formed on sidewalls of the gate cut region.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: March 22, 2022
    Assignee: International Business Machines Corporation
    Inventors: Huimei Zhou, Ruqiang Bao, Michael P. Belyansky, Andrew M. Greene, Gen Tsutsui
  • Patent number: 11276767
    Abstract: An additive core subtractive liner method is described for forming electrically conductive contacts. The method can include forming a first trench in an first dielectric layer to expose a first portion of a metal liner, and filling said first trench with a second dielectric layer. A metal cut trench is formed in the second dielectric layer. A portion of the metal liner exposed by the metal cut trench is removed with a subtractive method. The method continues with filling the metal cut trench with a dielectric fill, and replacing the remaining portions of the second dielectric layer with an additive core conductor to provide contacts to remaining portions of the metal liner.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: March 15, 2022
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Kisup Chung, Andrew M. Greene, Sivananda K. Kanakasabapathy, David L. Rath, Indira P. V. Seshadri, Rajasekhar Venigalla
  • Patent number: 11271106
    Abstract: A semiconductor structure includes a substrate, a bottom source/drain region disposed on a top surface of the substrate, and a plurality of fins disposed over a top surface of the bottom source/drain region. The fins provide vertical transport channels for one or more vertical transport field-effect transistors. The semiconductor structure also includes at least one self-aligned shared contact disposed between an adjacent pair of the plurality of fins. The adjacent pair of the plurality of fins includes a first fin providing a first vertical transport channel for a first vertical transport field-effect transistor and a second fin providing a second vertical transport channel for a second vertical transport field-effect transistor.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: March 8, 2022
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Brent A. Anderson, ChoongHyun Lee, Hemanth Jagannathan
  • Patent number: 11257721
    Abstract: A method of forming a semiconductor structure includes forming a plurality of fins over a top surface of a bottom source/drain region disposed over a top surface of a substrate, the fins providing vertical transport channels for a plurality of vertical transport field-effect transistors. The method also includes forming a first gate conductor surrounding a first one of an adjacent pair of the plurality of fins providing a first vertical transport channel for a first vertical transport field-effect transistor, forming a second gate conductor surrounding a second one of the adjacent pair of the plurality of fins providing a second vertical transport channel for a second vertical transport field-effect transistor, and forming at least one shared gate contact to the first gate conductor and the second gate conductor, the at least one shared gate contact being formed at first ends of the adjacent pair of the plurality of fins.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: February 22, 2022
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Brent A. Anderson, ChoongHyun Lee
  • Patent number: 11251285
    Abstract: A method of forming a vertical fin field effect transistor device, including, forming one or more vertical fins with a hardmask cap on each vertical fin on a substrate, forming a fin liner on the one or more vertical fins and hardmask caps, forming a sacrificial liner on the fin liner, and forming a bottom spacer layer on the sacrificial liner.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: February 15, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Paul C. Jamison, ChoongHyun Lee
  • Patent number: 11245020
    Abstract: One example of an apparatus includes a conducting channel region. The conducting channel region includes a plurality of epitaxially grown, in situ doped conducting channels arranged in a spaced apart relation relative to each other. A source positioned at a first end of the conducting channel region, and a drain positioned at a second end of the conducting channel region. A gate surrounds all sides of the conducting channel region and fills in spaces between the plurality of epitaxially grown, in situ doped conducting channels.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: February 8, 2022
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Michael A. Guillorn, Terence Hook, Robert R. Robison, Reinaldo Vega, Tenko Yamashita