Patents by Inventor Ryoichi Hibino

Ryoichi Hibino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230369618
    Abstract: A fuel cell control command device including: a catalyst potential calculation unit for calculating a catalyst potential of a cathode catalyst; a coating state calculation unit for calculating an oxide film formation amount of the catalyst; a command value candidate calculation unit for calculating a plurality of command value candidates including a combination of an estimated current, estimated total voltage, and a candidate control parameter, from which a power command value is obtained; a loss amount calculation unit for calculating an estimated loss for each combination; a provisional catalyst potential calculation unit for calculating an estimated catalyst potential for each combination; a deterioration amount calculation unit for calculating an estimated deterioration amount for each combination; and a command value calculation unit for selecting a combination having a minimum comprehensive index including the estimated loss and/or the estimated deterioration amount and outputting the selected combinati
    Type: Application
    Filed: September 21, 2021
    Publication date: November 16, 2023
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Norihiro FUKAYA, Takao WATANABE, Ryoichi HIBINO
  • Publication number: 20230361327
    Abstract: An operation mode of a secondary battery (BAT) is determined based on state of charge of BAT. A power generation provisional command value of fuel cell (FC) at time i is determined to maximize efficiency of FC based on system required power and state of charge of BAT at time i. An intermittent ON/OFF state at time i is determined such that switching of intermittent operation of FC is not continuous based on operation mode of BAT, the power generation provisional command value, and the system required power at time i, and an intermittent ON/OFF state at time (i?1). Further, when intermittent ON is determined at time i, the FC is stopped, and when intermittent OFF is determined at time i, a larger one is output, as the power generation command value for the FC at time i, between the power generation provisional command value and an intermittent OFF threshold.
    Type: Application
    Filed: September 21, 2021
    Publication date: November 9, 2023
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Takao WATANABE, Norihiro FUKAYA, Ryoichi HIBINO
  • Patent number: 11225148
    Abstract: A target value obtaining section obtains a target value for the difference in rotational motion between a first motor and a second motor and a target value for output torque. A torque command value calculating section calculates a torque command value for the first motor and a torque command value for the second motor that achieve both of the target value for the difference in rotational motion and the target value for the output torque by using an inverse model of a motion model corresponding to a merging system.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: January 18, 2022
    Assignee: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Teruhiko Nakazawa, Ryoichi Hibino, Hiroyuki Nishizawa, Atsushi Kawaguchi, Gentaro Yamanaka, Yasushi Amano, Masaru Sugai, Yasuhiro Torii
  • Patent number: 10926647
    Abstract: A vehicle driving apparatus includes a first motor, a second motor, and a planetary mechanism, and obtains a driving force by combining motive forces obtained from the first motor and the second motor by a planetary gear of the planetary mechanism. The vehicle driving apparatus includes at least one of a design value and a control quantity in which a frequency ratio between a sound generated by a rotation of the first motor and a sound generated by a rotation of the second motor satisfies a reduction condition of dissonance.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: February 23, 2021
    Assignee: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Teruhiko Nakazawa, Ryoichi Hibino, Makoto Kusakabe, Yasumitsu Osada, Shoji Nakahara, Hiroyuki Nishizawa, Yasuhiro Torii
  • Publication number: 20190329658
    Abstract: A vehicle driving apparatus includes a first motor, a second motor, and a planetary mechanism, and obtains a driving force by combining motive forces obtained from the first motor and the second motor by a planetary gear of the planetary mechanism. The vehicle driving apparatus includes at least one of a design value and a control quantity in which a frequency ratio between a sound generated by a rotation of the first motor and a sound generated by a rotation of the second motor satisfies a reduction condition of dissonance.
    Type: Application
    Filed: April 19, 2019
    Publication date: October 31, 2019
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Teruhiko NAKAZAWA, Ryoichi HIBINO, Makoto KUSAKABE, Yasumitsu OSADA, Shoji NAKAHARA, Hiroyuki NISHIZAWA, Yasuhiro TORII
  • Publication number: 20190176645
    Abstract: A target value obtaining section obtains a target value for the difference in rotational motion between a first motor and a second motor and a target value for output torque. A torque command value calculating section calculates a torque command value for the first motor and a torque command value for the second motor that achieve both of the target value for the difference in rotational motion and the target value for the output torque by using an inverse model of a motion model corresponding to a merging system.
    Type: Application
    Filed: November 19, 2018
    Publication date: June 13, 2019
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Teruhiko NAKAZAWA, Ryoichi HIBINO, Hiroyuki NISHIZAWA, Atsushi KAWAGUCHI, Gentaro YAMANAKA, Yasushi AMANO, Masaru SUGAI, Yasuhiro TORII
  • Patent number: 9457670
    Abstract: In a power generation control apparatus applied to a hybrid vehicle including a compound motor in which a wound rotor is connected to an internal combustion engine and a magnet rotor is connected to a transmission, when regenerative power generation is underway and the internal combustion engine is operative, a first motor/generator constituted by the wound rotor and the magnet rotor and the internal combustion engine are controlled such that torque output from the internal combustion engine is increased by torque applied to the internal combustion engine from the first motor/generator, and a power generation amount of a second motor/generator constituted by the magnet rotor and a stator is increased such that torque transmitted to an output shaft from the internal combustion engine is not applied to a drive wheel.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: October 4, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tadashi Fujiyoshi, Takahiro Shiina, Akira Murakami, Tatsuya Miyano, Takao Watanabe, Ryoichi Hibino
  • Patent number: 9341144
    Abstract: An apparatus controls an internal combustion engine provided with an EGR device having an EGR passage and an EGR valve that is provided in the EGR passage and can adjust an EGR amount. This apparatus includes a controller that estimates state parameters of the internal combustion engine that affect the behavior of the EGR gas within a predetermined period of time; sets constraints on the EGR amount within the predetermined period on the basis of an approximated dynamics obtained by approximating a true dynamics, which is a transition of the EGR amount within the predetermined period, so that approximated values do not exceed the true dynamics; determines a target value of the EGR amount according to the estimated state parameters within a range of the EGR amount on which the constraints that have been set; and controls the EGR valve so that the EGR amount becomes the determined target value.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: May 17, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Satoru Tanaka, Kota Sata, Masaaki Ishibuchi, Tomohiko Jimbo, Ryoichi Hibino
  • Patent number: 9297287
    Abstract: An exhaust gas control apparatus includes a control device controlling a urea addition valve for adding urea from an upstream side of a NOx reduction catalyst. The control device obtains an ammonia adsorption amount distribution through the NOx reduction catalyst. When an ammonia adsorption amount in a predetermined part on a downstream side equals or exceeds a predetermined threshold, the control device controls the urea addition valve to stop the urea supply or reduce the amount thereof. The urea addition valve is controlled based on an adsorption amount distribution obtained from a model on which the catalyst is divided into cells such that an ammonia adsorption amount in a first cell positioned furthest upstream equals or exceeds a predetermined threshold close to a saturation adsorption amount and an ammonia adsorption amount in a second cell positioned downstream of the first cell reaches a predetermined target value smaller than the threshold.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: March 29, 2016
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Shinya Hirota, Shunsuke Toshioka, Akira Mikami, Koichiro Fukuda, Sakutaro Hoshi, Takashi Endo, Ryoichi Hibino, Matsuei Ueda, Akihiko Asano, Takafumi Yamauchi, Akira Shichi, Makoto Koike, Masatoshi Maruyama, Masakazu Sakata
  • Publication number: 20140365055
    Abstract: In a power generation control apparatus applied to a hybrid vehicle including a compound motor in which a wound rotor is connected to an internal combustion engine and a magnet rotor is connected to a transmission, when regenerative power generation is underway and the internal combustion engine is operative, a first motor/generator constituted by the wound rotor and the magnet rotor and the internal combustion engine are controlled such that torque output from the internal combustion engine is increased by torque applied to the internal combustion engine from the first motor/generator, and a power generation amount of a second motor/generator constituted by the magnet rotor and a stator is increased such that torque transmitted to an output shaft from the internal combustion engine is not applied to a drive wheel.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 11, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tadashi Fujiyoshi, Takahiro Shiina, Akira Murakami, Tatsuya Miyano, Takao Watanabe, Ryoichi Hibino
  • Publication number: 20140174412
    Abstract: An apparatus controls an internal combustion engine provided with an EGR device having an EGR passage and an EGR valve that is provided in the EGR passage and can adjust an EGR amount. This apparatus includes a controller that estimates state parameters of the internal combustion engine that affect the behavior of the EGR gas within a predetermined period of time; sets constraints on the EGR amount within the predetermined period on the basis of an approximated dynamics obtained by approximating a true dynamics, which is a transition of the EGR amount within the predetermined period, so that approximated values do not exceed the true dynamics; determines a target value of the EGR amount according to the estimated state parameters within a range of the EGR amount on which the constraints that have been set; and controls the EGR valve so that the EGR amount becomes the determined target value.
    Type: Application
    Filed: August 3, 2012
    Publication date: June 26, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Satoru Tanaka, Kota Sata, Masaaki Ishibuchi, Tomohiko Jimbo, Ryoichi Hibino
  • Patent number: 8572956
    Abstract: A hydraulic supply device of an automatic transmission, which supplies operating oil to the automatic transmission that is able to shift power from an engine and transmit the power to drive wheels of a vehicle by selectively engaging a plurality of frictional engagement devices using hydraulic pressure is disclosed.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: November 5, 2013
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Tomohiro Miyabe, Masanobu Kimura, Ryoichi Hibino, Shinobu Nakamura, Masahiro Tomida
  • Publication number: 20130247543
    Abstract: An exhaust gas control apparatus includes a control device controlling a urea addition valve for adding urea from an upstream side of a NOx reduction catalyst. The control device obtains an ammonia adsorption amount distribution through the NOx reduction catalyst. When an ammonia adsorption amount in a predetermined part on a downstream side equals or exceeds a predetermined threshold, the control device controls the urea addition valve to stop the urea supply or reduce the amount thereof. The urea addition valve is controlled based on an adsorption amount distribution obtained from a model on which the catalyst is divided into cells such that an ammonia adsorption amount in a first cell positioned furthest upstream equals or exceeds a predetermined threshold close to a saturation adsorption amount and an ammonia adsorption amount in a second cell positioned downstream of the first cell reaches a predetermined target value smaller than the threshold.
    Type: Application
    Filed: September 21, 2011
    Publication date: September 26, 2013
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, DENSO CORPORATION
    Inventors: Shinya Hirota, Shunsuke Toshioka, Akira Mikami, Koichiro Fukuda, Sakutaro Hoshi, Takashi Endo, Ryoichi Hibino, Matsuei Ueda, Akihiko Asano, Takafumi Yamauchi, Akira Shichi, Makoto Koike, Masatoshi Maruyama, Masakazu Sakata
  • Publication number: 20100311538
    Abstract: A hydraulic pressure supply device of an automatic transmission which supplies working oil to the automatic transmission capable of utilizing the oil pressure to make any of a plurality of frictional engagement devices selectively engaged, thereby performing gear shift to transmit the power from an engine to driving wheels of a vehicle is disclosed.
    Type: Application
    Filed: March 18, 2010
    Publication date: December 9, 2010
    Applicant: AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Tomohiro MIYABE, Ryoichi HIBINO, Shinobu NAKAMURA, Masahiro TOMIDA
  • Publication number: 20100236231
    Abstract: A hydraulic supply device of an automatic transmission, which supplies operating oil to the automatic transmission that is able to shift power from an engine and transmit the power to drive wheels of a vehicle by selectively engaging a plurality of frictional engagement devices using hydraulic pressure is disclosed.
    Type: Application
    Filed: March 18, 2010
    Publication date: September 23, 2010
    Applicant: AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Tomohiro Miyabe, Masanobu Kimura, Ryoichi Hibino, Shinobu Nakamura, Masahiro Tomida
  • Patent number: 7169079
    Abstract: A control apparatus and method control a torque of an engine coupled to an input shaft of an automatic transmission during a shift by that automatic transmission. A torque-down control by which the engine torque is decreased by a predetermined amount is performed, a torque-restore control starting point at which time torque-restore control is to be started is determined, and the torque-restore control so as to gradually restore the engine torque to a value before the torque-down control was performed is started at the torque-restore control starting point. The torque-restore control starting point is determined according to a dynamic model which simulates behavior of the automatic transmission over time from start of the torque-down control, so that a rotational speed of the input shaft of the automatic transmission at a target point substantially matches a target speed.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: January 30, 2007
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takaaki Tokura, Norimi Asahara, Katsumi Kono, Ryoichi Hibino, Hiroyuki Nishizawa, Masataka Osawa
  • Patent number: 7159506
    Abstract: The load element state detecting portion 72 detects the completion of the filling of the hydraulic oil into the clutch 62 and the working limit of the accumulator 64 on the basis of the displacement of the spool valve element 42. That is, since the completion of the filling of the hydraulic oil into the clutch and the working limit of the accumulator 64 are directly detected, so that the completion of the filling of the hydraulic oil into the clutch 62 and the working limit of the accumulator 64 can be detected with high precision regardless of differences among products and the time-lapse variation. Furthermore, they can be detected without equipping any special device to the hydraulic control circuit, and thus there is an advantage that the device construction is simple.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: January 9, 2007
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takaaki Tokura, Katsumi Kono, Tomohiro Asami, Nobufusa Kobayashi, Hideki Takamatsu, Norimi Asahara, Shu Asami, Ryoichi Hibino, Hiroyuki Nishizawa, Masataka Osawa
  • Patent number: 7032468
    Abstract: The vehicle weight determination device includes a microcomputer for achieving the vehicle weight determination by obtaining a driving force after filtering based on the speed ratio of the torque converter and obtaining an integrated driving force with the absolute value of the driving force after filtering by using an area method. Similarly, acceleration after filtering is obtained by filtering process of the acceleration and an integrated to obtain an integrated acceleration. The vehicle weight is determined by the integrated driving force divided by the integrated acceleration.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: April 25, 2006
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Naoki Yamada, Toshiaki Ishiguro, Hiroaki Kato, Kisaburo Hayakawa, Masataka Osawa, Ryoichi Hibino
  • Publication number: 20060079361
    Abstract: The first element has a first thickness. The second element has a second thickness that is smaller than the first thickness, and the number of second elements is approximately equal to that of the first elements. Both the first and second elements are supported by the hoop so as to stack in the thickness direction according to a maximum length sequence.
    Type: Application
    Filed: October 12, 2005
    Publication date: April 13, 2006
    Applicants: Toyota Jidosha Kabushiki Kaisha, Aisin AW Co., Ltd.
    Inventors: Yasushi Ueda, Ichiro Aoto, Yuji Suzuki, Ryoichi Hibino, Masataka Osawa, Masashi Hattori, Katsumori Fujii, Ryo Nakamura
  • Patent number: 6866612
    Abstract: In order to control slip amount of a disengagement side engagement device at the time of a gear shift operation, a target value Nr for rotational speed of an input shaft of an automatic transmission is calculated inside an input shaft speed target value calculating block. Slip control of the disengagement side engagement device is then carried out by controlling engine torque using an engine torque control amount obtained from a engine torque control amount estimation block and the clutch slip amount compensation value calculating section to cause rotation speed Nt of the input shaft to follow the target value Nr. In this way, responsiveness and precision of slip control of the disengagement side engagement device at the time of gear shift operation are improved, and it is possible to improve gear shift shock and to carry out a gear shift operation in a short period of time.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: March 15, 2005
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takaaki Tokura, Katsumi Kono, Norimi Asahara, Masataka Osawa, Hiroyuki Nishizawa, Ryoichi Hibino