Patents by Inventor Ryouichi Tsunedomi

Ryouichi Tsunedomi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200172966
    Abstract: An object of the present invention is to provide a simple and efficient device for predicting a risk of occurrence of a side effect of irinotecan by analyzing a single nucleotide polymorphism in a region encoding a specific gene. The prediction of the risk of the occurrence of a side effect of irinotecan is assisted by analyzing a single nucleotide polymorphism in a region encoding the APCDD1L gene, the R3HCC1 gene, the OR5112 gene, the MKKS gene, the EDEM3 gene, or the ACOX1 gene which are present on genomic DNA in a biological sample collected from a test subject; or a single nucleotide polymorphism which is in linkage disequilibrium with or genetically linked to the single nucleotide polymorphism, and determining whether the single nucleotide polymorphism is homozygous for a variant type, heterozygous, or homozygous for a wild-type.
    Type: Application
    Filed: February 12, 2020
    Publication date: June 4, 2020
    Inventors: Masaaki Oka, Shoichi Hazama, Ryouichi Tsunedomi
  • Publication number: 20200115740
    Abstract: A therapeutic effect of irinotecan is predicted using a predetermined genetic polymorphism. A genetic polymorphism identified by rs1980576 in APCDD1L gene, or a genetic polymorphism in linkage disequilibrium with the above genetic polymorphism is analyzed, and determination is performed based on the genotype of the genetic polymorphism.
    Type: Application
    Filed: June 22, 2018
    Publication date: April 16, 2020
    Applicants: Yamaguchi University, Toyo Kohan Co., Ltd.
    Inventors: Ryouichi Tsunedomi, Shoichi Hazama, Hiroaki Nagano
  • Patent number: 10450601
    Abstract: A buffer composition for hybridization of a target nucleic acid is provided. The nucleic acid can include a nucleotide to be detected with a nucleic acid probe. The probe can contain a nucleotide sequence complementary to the target nucleic acid. The buffer can include a blocking nucleic acid having a nucleotide sequence complementary to a non-target nucleic acid having a nucleotide not to be detected corresponding to the nucleotide to be detected. The buffer composition can suppress non-specific hybridization to the nucleic acid probe even when a non-target nucleic acid is present. The use of the buffer composition can achieve excellent detection efficiency of the target nucleic acid.
    Type: Grant
    Filed: September 1, 2014
    Date of Patent: October 22, 2019
    Assignees: Toyo Kohan Co., Ltd., Yamaguchi University
    Inventors: Shuichi Kamei, Mayuko Hosoya, Masaaki Oka, Shoichi Hazama, Ryouichi Tsunedomi
  • Publication number: 20190161791
    Abstract: In the case of using a blocking nucleic acid to prevent non-specific hybridization of a target nucleic acid with a nucleic acid probe, further excellent efficiency of detecting the target nucleic acid is achieved. A buffer composition used in hybridization of a target nucleic acid with a nucleic acid probe, wherein the buffer composition for hybridization contains a blocking nucleic acid comprising a nucleotide sequence complementary to a region comprising at least a non-detection target nucleotide in a non-target nucleic acid, in a concentration of one or more times higher than the concentration of a nucleic acid in a nucleic acid mixture consisting of the target nucleic acid and the non-target nucleic acid.
    Type: Application
    Filed: August 2, 2017
    Publication date: May 30, 2019
    Applicants: TOYO KOHAN CO., LTD., YAMAGUCHI UNIVERSITY
    Inventors: Toshiya TSUDA, Shuichi KAMEI, Mitsuyoshi OBA, Hirofumi YAMANO, Ryouichi TSUNEDOMI, Shoichi HAZAMA, Hiroaki NAGANO
  • Publication number: 20180237833
    Abstract: An object of the present invention is to provide a simple and efficient device for predicting a risk of occurrence of a side effect of irinotecan by analyzing a single nucleotide polymorphism in a region encoding a specific gene. The prediction of the risk of the occurrence of a side effect of irinotecan is assisted by analyzing a single nucleotide polymorphism in a region encoding the APCDD1L gene, the R3HCC1 gene, the OR5112 gene, the MKKS gene, the EDEM3 gene, or the ACOX1 gene which are present on genomic DNA in a biological sample collected from a test subject; or a single nucleotide polymorphism which is in linkage disequilibrium with or genetically linked to the single nucleotide polymorphism, and determining whether the single nucleotide polymorphism is homozygous for a variant type, heterozygous, or homozygous for a wild-type.
    Type: Application
    Filed: February 16, 2016
    Publication date: August 23, 2018
    Inventors: Masaaki Oka, Shoichi Hazama, Ryouichi Tsunedomi
  • Publication number: 20160265037
    Abstract: A buffer composition for hybridization of a target nucleic acid is provided. The nucleic acid can include a nucleotide to be detected with a nucleic acid probe. The probe can contain a nucleotide sequence complementary to the target nucleic acid. The buffer can include a blocking nucleic acid having a nucleotide sequence complementary to a non-target nucleic acid having a nucleotide not to be detected corresponding to the nucleotide to be detected. The buffer composition can suppress non-specific hybridization to the nucleic acid probe even when a non-target nucleic acid is present. The use of the buffer composition can achieve excellent detection efficiency of the target nucleic acid.
    Type: Application
    Filed: September 1, 2014
    Publication date: September 15, 2016
    Applicants: Toyo Kohan Co., Ltd., Yamaguchi University
    Inventors: Shuichi Kamei, Mayuko Hosoya, Masaki Oka, Shoichi Hazama, Ryouichi Tsunedomi
  • Publication number: 20110288783
    Abstract: A drug effect-adverse effect prediction system includes a clinical data analysis table generating part, for each combination of genotypes relating to a drug effect or adverse effect, for generation of an analysis table for handling cases related to presence or absence of the drug effect or adverse effect. The system also includes a reliability analysis part, a discrimination formula generating part, a prediction part, and a discrimination formula optimizing part.
    Type: Application
    Filed: June 1, 2011
    Publication date: November 24, 2011
    Applicants: Toyo Kohan Co., Ltd., YAMAGUCHI UNIVERSITY
    Inventors: Masaaki Oka, Yoshihiko Hamamoto, Shouichi Hazama, Yusuke Fujita, Ryouichi Tsunedomi