Patents by Inventor Ryuuichi Kuzuo

Ryuuichi Kuzuo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9601772
    Abstract: The present invention provides a cathode active material that makes possible a high capacity nonaqueous electrolyte secondary battery that has excellent discharge load characteristics that provide both good cycle characteristics and thermal stability. The cathode active material comprises a lithium nickel composite oxide having the compositional formula LiNi1?aMaO2 (where, M is at least one kind of element that is selected from among a transitional metal other than Ni, a group 2 element, and group 13 element, and 0.01?a?0.5) to which fine lithium manganese composite oxide particle adhere to the surface thereof. This lithium nickel composite oxide is obtained by adding manganese salt solution to a lithium nickel composite oxide slurry, causing manganese hydroxide that contains lithium to adhere to the surface of the lithium nickel composite oxide particles, and then baking that lithium nickel composite oxide.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: March 21, 2017
    Assignees: SUMITOMO METAL MINING CO. LTD., MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Hideo Sasaoka, Ryuuichi Kuzuo, Atsushi Fukui, Mitsukuni Kondou, Shin Imaizumi, Kensuke Nakura, Shuji Tsutsumi
  • Publication number: 20080311473
    Abstract: The present invention provides a cathode active material that makes possible a high capacity nonaqueous electrolyte secondary battery that has excellent discharge load characteristics that provide both good cycle characteristics and thermal stability. The cathode active material comprises a lithium nickel composite oxide having the compositional formula LiNi1?aMaO2 (where, M is at least one kind of element that is selected from among a transitional metal other than Ni, a group 2 element, and group 13 element, and 0.01?a?0.5) to which fine lithium manganese composite oxide particle adhere to the surface thereof. This lithium nickel composite oxide is obtained by adding manganese salt solution to a lithium nickel composite oxide slurry, causing manganese hydroxide that contains lithium to adhere to the surface of the lithium nickel composite oxide particles, and then baking that lithium nickel composite oxide.
    Type: Application
    Filed: February 20, 2008
    Publication date: December 18, 2008
    Inventors: Hideo SASAOKA, Ryuuichi Kuzuo, Atsushi Fukui, Mitsukuni Kondou, Shin Imaizumi, Kensuke Nakura, Shuji Tsutsumi
  • Publication number: 20080233481
    Abstract: To provide a positive electrode active material for a non-aqueous electrolyte secondary battery, which can achieve high capacity and high output simultaneously, and a non-aqueous electrolyte secondary battery using the same. A non-aqueous electrolyte secondary battery is obtained by using as a positive electrode, a positive electrode active material for a non-aqueous electrolyte secondary battery, which is expressed by the general formula: Lix(Ni1-yCoy)1-zMzO2 (0.98?x?1.10, 0.05?y?0.4, 0.01?z?0.2, M=at least one element selected from the group of Al, Zn, Ti and Mg), and which has a Li site occupancy of the Li site in crystal of 98.5% or more, and a metal site occupancy of the metal site of from 95% to 98% inclusive, obtained by Rietveld analysis.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 25, 2008
    Inventors: Ryuuichi Kuzuo, Atsushi Fukui, Katsuya Kase, Tomoyoshi Ueki, Kazuhiro Okawa, Syuhei Oda